本文整理汇总了C++中MeshBase::get_boundary_info方法的典型用法代码示例。如果您正苦于以下问题:C++ MeshBase::get_boundary_info方法的具体用法?C++ MeshBase::get_boundary_info怎么用?C++ MeshBase::get_boundary_info使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MeshBase
的用法示例。
在下文中一共展示了MeshBase::get_boundary_info方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: flood
void
SideSetsGeneratorBase::flood(const Elem * elem,
Point normal,
boundary_id_type side_id,
MeshBase & mesh)
{
if (elem == nullptr || (_visited[side_id].find(elem) != _visited[side_id].end()))
return;
_visited[side_id].insert(elem);
for (unsigned int side = 0; side < elem->n_sides(); ++side)
{
if (elem->neighbor_ptr(side))
continue;
_fe_face->reinit(elem, side);
const std::vector<Point> normals = _fe_face->get_normals();
// We'll just use the normal of the first qp
if (std::abs(1.0 - normal * normals[0]) <= _variance)
{
mesh.get_boundary_info().add_side(elem, side, side_id);
for (unsigned int neighbor = 0; neighbor < elem->n_sides(); ++neighbor)
{
// Flood to the neighboring elements using the current matching side normal from this
// element.
// This will allow us to tolerate small changes in the normals so we can "paint" around a
// curve.
flood(elem->neighbor_ptr(neighbor), _fixed_normal ? normal : normals[0], side_id, mesh);
}
}
}
}
示例2:
void
MeshExtruderGenerator::changeID(MeshBase & mesh,
const std::vector<BoundaryName> & names,
BoundaryID old_id)
{
std::vector<boundary_id_type> boundary_ids = MooseMeshUtils::getBoundaryIDs(mesh, names, true);
if (std::find(boundary_ids.begin(), boundary_ids.end(), old_id) == boundary_ids.end())
MooseMeshUtils::changeBoundaryId(mesh, old_id, boundary_ids[0], true);
for (unsigned int i = 0; i < boundary_ids.size(); ++i)
{
mesh.get_boundary_info().sideset_name(boundary_ids[i]) = names[i];
mesh.get_boundary_info().nodeset_name(boundary_ids[i]) = names[i];
}
}
示例3:
void MeshTools::Subdivision::all_subdivision(MeshBase & mesh)
{
std::vector<Elem *> new_elements;
new_elements.reserve(mesh.n_elem());
const bool mesh_has_boundary_data =
(mesh.get_boundary_info().n_boundary_ids() > 0);
std::vector<Elem *> new_boundary_elements;
std::vector<short int> new_boundary_sides;
std::vector<boundary_id_type> new_boundary_ids;
MeshBase::const_element_iterator el = mesh.elements_begin();
const MeshBase::const_element_iterator end_el = mesh.elements_end();
for (; el != end_el; ++el)
{
const Elem * elem = *el;
libmesh_assert_equal_to(elem->type(), TRI3);
Elem * tri = new Tri3Subdivision;
tri->set_id(elem->id());
tri->subdomain_id() = elem->subdomain_id();
tri->set_node(0) = (*el)->get_node(0);
tri->set_node(1) = (*el)->get_node(1);
tri->set_node(2) = (*el)->get_node(2);
if (mesh_has_boundary_data)
{
for (unsigned short side = 0; side < elem->n_sides(); ++side)
{
const boundary_id_type boundary_id =
mesh.get_boundary_info().boundary_id(elem, side);
if (boundary_id != BoundaryInfo::invalid_id)
{
// add the boundary id to the list of new boundary ids
new_boundary_ids.push_back(boundary_id);
new_boundary_elements.push_back(tri);
new_boundary_sides.push_back(side);
}
}
// remove the original element from the BoundaryInfo structure
mesh.get_boundary_info().remove(elem);
}
new_elements.push_back(tri);
mesh.insert_elem(tri);
}
mesh.prepare_for_use();
if (mesh_has_boundary_data)
{
// If the old mesh had boundary data, the new mesh better have some too.
libmesh_assert_greater(new_boundary_elements.size(), 0);
// We should also be sure that the lengths of the new boundary data vectors
// are all the same.
libmesh_assert_equal_to(new_boundary_sides.size(), new_boundary_elements.size());
libmesh_assert_equal_to(new_boundary_sides.size(), new_boundary_ids.size());
// Add the new boundary info to the mesh.
for (unsigned int s = 0; s < new_boundary_elements.size(); ++s)
mesh.get_boundary_info().add_side(new_boundary_elements[s],
new_boundary_sides[s],
new_boundary_ids[s]);
}
mesh.prepare_for_use();
}
示例4: while
void MeshTools::Subdivision::add_boundary_ghosts(MeshBase & mesh)
{
static const Real tol = 1e-5;
// add the mirrored ghost elements (without using iterators, because the mesh is modified in the course)
std::vector<Tri3Subdivision *> ghost_elems;
std::vector<Node *> ghost_nodes;
const unsigned int n_elem = mesh.n_elem();
for (unsigned int eid = 0; eid < n_elem; ++eid)
{
Elem * elem = mesh.elem(eid);
libmesh_assert_equal_to(elem->type(), TRI3SUBDIVISION);
// If the triangle happens to be in a corner (two boundary
// edges), we perform a counter-clockwise loop by mirroring the
// previous triangle until we come back to the original
// triangle. This prevents degenerated triangles in the mesh
// corners and guarantees that the node in the middle of the
// loop is of valence=6.
for (unsigned int i = 0; i < elem->n_sides(); ++i)
{
libmesh_assert_not_equal_to(elem->neighbor(i), elem);
if (elem->neighbor(i) == libmesh_nullptr &&
elem->neighbor(next[i]) == libmesh_nullptr)
{
Elem * nelem = elem;
unsigned int k = i;
for (unsigned int l=0;l<4;l++)
{
// this is the vertex to be mirrored
Point point = nelem->point(k) + nelem->point(next[k]) - nelem->point(prev[k]);
// Check if the proposed vertex doesn't coincide
// with one of the existing vertices. This is
// necessary because for some triangulations, it can
// happen that two mirrored ghost vertices coincide,
// which would then lead to a zero size ghost
// element below.
Node * node = libmesh_nullptr;
for (unsigned int j = 0; j < ghost_nodes.size(); ++j)
{
if ((*ghost_nodes[j] - point).size() < tol * (elem->point(k) - point).size())
{
node = ghost_nodes[j];
break;
}
}
// add the new vertex only if no other is nearby
if (node == libmesh_nullptr)
{
node = mesh.add_point(point);
ghost_nodes.push_back(node);
}
Tri3Subdivision * newelem = new Tri3Subdivision();
// add the first new ghost element to the list just as in the non-corner case
if (l == 0)
ghost_elems.push_back(newelem);
newelem->set_node(0) = nelem->get_node(next[k]);
newelem->set_node(1) = nelem->get_node(k);
newelem->set_node(2) = node;
newelem->set_neighbor(0, nelem);
newelem->set_ghost(true);
if (l>0)
newelem->set_neighbor(2, libmesh_nullptr);
nelem->set_neighbor(k, newelem);
mesh.add_elem(newelem);
mesh.get_boundary_info().add_node(nelem->get_node(k), 1);
mesh.get_boundary_info().add_node(nelem->get_node(next[k]), 1);
mesh.get_boundary_info().add_node(nelem->get_node(prev[k]), 1);
mesh.get_boundary_info().add_node(node, 1);
nelem = newelem;
k = 2 ;
}
Tri3Subdivision * newelem = new Tri3Subdivision();
newelem->set_node(0) = elem->get_node(next[i]);
newelem->set_node(1) = nelem->get_node(2);
newelem->set_node(2) = elem->get_node(prev[i]);
newelem->set_neighbor(0, nelem);
nelem->set_neighbor(2, newelem);
newelem->set_ghost(true);
newelem->set_neighbor(2, elem);
elem->set_neighbor(next[i],newelem);
mesh.add_elem(newelem);
break;
}
}
for (unsigned int i = 0; i < elem->n_sides(); ++i)
{
//.........这里部分代码省略.........