当前位置: 首页>>代码示例>>C++>>正文


C++ Measurement::measurement_方法代码示例

本文整理汇总了C++中Measurement::measurement_方法的典型用法代码示例。如果您正苦于以下问题:C++ Measurement::measurement_方法的具体用法?C++ Measurement::measurement_怎么用?C++ Measurement::measurement_使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Measurement的用法示例。


在下文中一共展示了Measurement::measurement_方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: correct

  void Ekf::correct(const Measurement &measurement)
  {
    if (getDebug())
    {
      *debugStream_ << "---------------------- Ekf::correct ----------------------\n";
      *debugStream_ << "Measurement is:\n";
      *debugStream_ << measurement.measurement_ << "\n";
      *debugStream_ << "Measurement covariance is:\n";
      *debugStream_ << measurement.covariance_ << "\n";
    }

    // We don't want to update everything, so we need to build matrices that only update
    // the measured parts of our state vector

    // First, determine how many state vector values we're updating
    std::vector<size_t> updateIndices;
    for (size_t i = 0; i < measurement.updateVector_.size(); ++i)
    {
      if (measurement.updateVector_[i])
      {
        // Handle nan and inf values in measurements
        if (std::isnan(measurement.measurement_(i)) || std::isnan(measurement.covariance_(i,i)))
        {
          if (getDebug())
          {
            *debugStream_ << "Value at index " << i << " was nan. Excluding from update.\n";
          }
        }
        else if (std::isinf(measurement.measurement_(i)) || std::isinf(measurement.covariance_(i,i)))
        {
          if (getDebug())
          {
            *debugStream_ << "Value at index " << i << " was inf. Excluding from update.\n";
          }
        }
        else
        {
          updateIndices.push_back(i);
        }
      }
    }

    if (getDebug())
    {
      *debugStream_ << "Update indices are:\n";
      *debugStream_ << updateIndices << "\n";
    }

    size_t updateSize = updateIndices.size();

    // Now set up the relevant matrices
    Eigen::VectorXd stateSubset(updateSize);                             // x (in most literature)
    Eigen::VectorXd measurementSubset(updateSize);                       // z
    Eigen::MatrixXd measurementCovarianceSubset(updateSize, updateSize); // R
    Eigen::MatrixXd stateToMeasurementSubset(updateSize, state_.rows()); // H
    Eigen::MatrixXd kalmanGainSubset(state_.rows(), updateSize);         // K
    Eigen::VectorXd innovationSubset(updateSize);                        // z - Hx

    stateSubset.setZero();
    measurementSubset.setZero();
    measurementCovarianceSubset.setZero();
    stateToMeasurementSubset.setZero();
    kalmanGainSubset.setZero();
    innovationSubset.setZero();

    // Now build the sub-matrices from the full-sized matrices
    for (size_t i = 0; i < updateSize; ++i)
    {
      measurementSubset(i) = measurement.measurement_(updateIndices[i]);
      stateSubset(i) = state_(updateIndices[i]);

      for (size_t j = 0; j < updateSize; ++j)
      {
        measurementCovarianceSubset(i, j) = measurement.covariance_(updateIndices[i], updateIndices[j]);
      }

      // Handle negative (read: bad) covariances in the measurement. Rather
      // than exclude the measurement or make up a covariance, just take
      // the absolute value.
      if (measurementCovarianceSubset(i, i) < 0)
      {
        if (getDebug())
        {
          *debugStream_ << "WARNING: Negative covariance for index " << i << " of measurement (value is" << measurementCovarianceSubset(i, i)
            << "). Using absolute value...\n";
        }

        measurementCovarianceSubset(i, i) = ::fabs(measurementCovarianceSubset(i, i));
      }

      // If the measurement variance for a given variable is very
      // near 0 (as in e-50 or so) and the variance for that
      // variable in the covariance matrix is also near zero, then
      // the Kalman gain computation will blow up. Really, no
      // measurement can be completely without error, so add a small
      // amount in that case.
      if (measurementCovarianceSubset(i, i) < 1e-6)
      {
        measurementCovarianceSubset(i, i) = 1e-6;

//.........这里部分代码省略.........
开发者ID:Brazilian-Institute-of-Robotics,项目名称:slam-pose_estimation,代码行数:101,代码来源:ekf.cpp

示例2: correct

  void Ukf::correct(const Measurement &measurement)
  {
    FB_DEBUG("---------------------- Ukf::correct ----------------------\n" <<
             "State is:\n" << state_ <<
             "\nMeasurement is:\n" << measurement.measurement_ <<
             "\nMeasurement covariance is:\n" << measurement.covariance_ << "\n");

    // In our implementation, it may be that after we call predict once, we call correct
    // several times in succession (multiple measurements with different time stamps). In
    // that event, the sigma points need to be updated to reflect the current state.
    if(!uncorrected_)
    {
      // Take the square root of a small fraction of the estimateErrorCovariance_ using LL' decomposition
      weightedCovarSqrt_ = ((STATE_SIZE + lambda_) * estimateErrorCovariance_).llt().matrixL();

      // Compute sigma points

      // First sigma point is the current state
      sigmaPoints_[0] = state_;

      // Next STATE_SIZE sigma points are state + weightedCovarSqrt_[ith column]
      // STATE_SIZE sigma points after that are state - weightedCovarSqrt_[ith column]
      for(size_t sigmaInd = 0; sigmaInd < STATE_SIZE; ++sigmaInd)
      {
        sigmaPoints_[sigmaInd + 1] = state_ + weightedCovarSqrt_.col(sigmaInd);
        sigmaPoints_[sigmaInd + 1 + STATE_SIZE] = state_ - weightedCovarSqrt_.col(sigmaInd);
      }
    }

    // We don't want to update everything, so we need to build matrices that only update
    // the measured parts of our state vector

    // First, determine how many state vector values we're updating
    std::vector<size_t> updateIndices;
    for (size_t i = 0; i < measurement.updateVector_.size(); ++i)
    {
      if (measurement.updateVector_[i])
      {
        // Handle nan and inf values in measurements
        if (std::isnan(measurement.measurement_(i)))
        {
          FB_DEBUG("Value at index " << i << " was nan. Excluding from update.\n");
        }
        else if (std::isinf(measurement.measurement_(i)))
        {
          FB_DEBUG("Value at index " << i << " was inf. Excluding from update.\n");
        }
        else
        {
          updateIndices.push_back(i);
        }
      }
    }

    FB_DEBUG("Update indices are:\n" << updateIndices << "\n");

    size_t updateSize = updateIndices.size();

    // Now set up the relevant matrices
    Eigen::VectorXd stateSubset(updateSize);                             // x (in most literature)
    Eigen::VectorXd measurementSubset(updateSize);                       // z
    Eigen::MatrixXd measurementCovarianceSubset(updateSize, updateSize); // R
    Eigen::MatrixXd stateToMeasurementSubset(updateSize, STATE_SIZE);    // H
    Eigen::MatrixXd kalmanGainSubset(STATE_SIZE, updateSize);            // K
    Eigen::VectorXd innovationSubset(updateSize);                        // z - Hx
    Eigen::VectorXd predictedMeasurement(updateSize);
    Eigen::VectorXd sigmaDiff(updateSize);
    Eigen::MatrixXd predictedMeasCovar(updateSize, updateSize);
    Eigen::MatrixXd crossCovar(STATE_SIZE, updateSize);

    std::vector<Eigen::VectorXd> sigmaPointMeasurements(sigmaPoints_.size(), Eigen::VectorXd(updateSize));

    stateSubset.setZero();
    measurementSubset.setZero();
    measurementCovarianceSubset.setZero();
    stateToMeasurementSubset.setZero();
    kalmanGainSubset.setZero();
    innovationSubset.setZero();
    predictedMeasurement.setZero();
    predictedMeasCovar.setZero();
    crossCovar.setZero();

    // Now build the sub-matrices from the full-sized matrices
    for (size_t i = 0; i < updateSize; ++i)
    {
      measurementSubset(i) = measurement.measurement_(updateIndices[i]);
      stateSubset(i) = state_(updateIndices[i]);

      for (size_t j = 0; j < updateSize; ++j)
      {
        measurementCovarianceSubset(i, j) = measurement.covariance_(updateIndices[i], updateIndices[j]);
      }

      // Handle negative (read: bad) covariances in the measurement. Rather
      // than exclude the measurement or make up a covariance, just take
      // the absolute value.
      if (measurementCovarianceSubset(i, i) < 0)
      {
        FB_DEBUG("WARNING: Negative covariance for index " << i <<
                 " of measurement (value is" << measurementCovarianceSubset(i, i) <<
//.........这里部分代码省略.........
开发者ID:AGV-IIT-KGP,项目名称:eklavya-2015,代码行数:101,代码来源:ukf.cpp

示例3: correct

  void Ekf::correct(const Measurement &measurement)
  {
    FB_DEBUG("---------------------- Ekf::correct ----------------------\n" <<
             "State is:\n" << state_ << "\n"
             "Topic is:\n" << measurement.topicName_ << "\n"
             "Measurement is:\n" << measurement.measurement_ << "\n"
             "Measurement topic name is:\n" << measurement.topicName_ << "\n\n"
             "Measurement covariance is:\n" << measurement.covariance_ << "\n");

    // We don't want to update everything, so we need to build matrices that only update
    // the measured parts of our state vector. Throughout prediction and correction, we
    // attempt to maximize efficiency in Eigen.

    // First, determine how many state vector values we're updating
    std::vector<size_t> updateIndices;
    for (size_t i = 0; i < measurement.updateVector_.size(); ++i)
    {
      if (measurement.updateVector_[i])
      {
        // Handle nan and inf values in measurements
        if (std::isnan(measurement.measurement_(i)))
        {
          FB_DEBUG("Value at index " << i << " was nan. Excluding from update.\n");
        }
        else if (std::isinf(measurement.measurement_(i)))
        {
          FB_DEBUG("Value at index " << i << " was inf. Excluding from update.\n");
        }
        else
        {
          updateIndices.push_back(i);
        }
      }
    }

    FB_DEBUG("Update indices are:\n" << updateIndices << "\n");

    size_t updateSize = updateIndices.size();

    // Now set up the relevant matrices
    Eigen::VectorXd stateSubset(updateSize);                              // x (in most literature)
    Eigen::VectorXd measurementSubset(updateSize);                        // z
    Eigen::MatrixXd measurementCovarianceSubset(updateSize, updateSize);  // R
    Eigen::MatrixXd stateToMeasurementSubset(updateSize, state_.rows());  // H
    Eigen::MatrixXd kalmanGainSubset(state_.rows(), updateSize);          // K
    Eigen::VectorXd innovationSubset(updateSize);                         // z - Hx

    stateSubset.setZero();
    measurementSubset.setZero();
    measurementCovarianceSubset.setZero();
    stateToMeasurementSubset.setZero();
    kalmanGainSubset.setZero();
    innovationSubset.setZero();

    // Now build the sub-matrices from the full-sized matrices
    for (size_t i = 0; i < updateSize; ++i)
    {
      measurementSubset(i) = measurement.measurement_(updateIndices[i]);
      stateSubset(i) = state_(updateIndices[i]);

      for (size_t j = 0; j < updateSize; ++j)
      {
        measurementCovarianceSubset(i, j) = measurement.covariance_(updateIndices[i], updateIndices[j]);
      }

      // Handle negative (read: bad) covariances in the measurement. Rather
      // than exclude the measurement or make up a covariance, just take
      // the absolute value.
      if (measurementCovarianceSubset(i, i) < 0)
      {
        FB_DEBUG("WARNING: Negative covariance for index " << i <<
                 " of measurement (value is" << measurementCovarianceSubset(i, i) <<
                 "). Using absolute value...\n");

        measurementCovarianceSubset(i, i) = ::fabs(measurementCovarianceSubset(i, i));
      }

      // If the measurement variance for a given variable is very
      // near 0 (as in e-50 or so) and the variance for that
      // variable in the covariance matrix is also near zero, then
      // the Kalman gain computation will blow up. Really, no
      // measurement can be completely without error, so add a small
      // amount in that case.
      if (measurementCovarianceSubset(i, i) < 1e-9)
      {
        FB_DEBUG("WARNING: measurement had very small error covariance for index " << updateIndices[i] <<
                 ". Adding some noise to maintain filter stability.\n");

        measurementCovarianceSubset(i, i) = 1e-9;
      }
    }

    // The state-to-measurement function, h, will now be a measurement_size x full_state_size
    // matrix, with ones in the (i, i) locations of the values to be updated
    for (size_t i = 0; i < updateSize; ++i)
    {
      stateToMeasurementSubset(i, updateIndices[i]) = 1;
    }

    FB_DEBUG("Current state subset is:\n" << stateSubset <<
//.........这里部分代码省略.........
开发者ID:jinpyojeon,项目名称:TRIN_EARL,代码行数:101,代码来源:ekf.cpp


注:本文中的Measurement::measurement_方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。