当前位置: 首页>>代码示例>>C++>>正文


C++ MatrixDouble::getMean方法代码示例

本文整理汇总了C++中MatrixDouble::getMean方法的典型用法代码示例。如果您正苦于以下问题:C++ MatrixDouble::getMean方法的具体用法?C++ MatrixDouble::getMean怎么用?C++ MatrixDouble::getMean使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MatrixDouble的用法示例。


在下文中一共展示了MatrixDouble::getMean方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: restingDataCollected

CalibrateResult restingDataCollected(const MatrixDouble& data) {
    // take average of X and Y acceleration as the zero G value
    zeroG = (data.getMean()[0] + data.getMean()[1]) / 2;
    oneG = data.getMean()[2]; // use Z acceleration as one G value
    
    double range = abs(oneG - zeroG);
    vector<double> stddev = data.getStdDev();
    
    if (stddev[0] / range > 0.05 ||
        stddev[1] / range > 0.05 ||
        stddev[2] / range > 0.05)
        return CalibrateResult(CalibrateResult::WARNING,
            "Accelerometer readings are noisy, check circuit.");
    
    return CalibrateResult::SUCCESS;
}
开发者ID:damellis,项目名称:ESP,代码行数:16,代码来源:user_accelerometer_gestures_simple.cpp

示例2: restingDataCollected

CalibrateResult restingDataCollected(const MatrixDouble& data)
{
    // take average of X and Y acceleration as the zero G value
    zeroG = (data.getMean()[0] + data.getMean()[1]) / 2;
    oneG = data.getMean()[2]; // use Z acceleration as one G value
    
    double range = abs(oneG - zeroG);
    vector<double> stddev = data.getStdDev();
    
    if (stddev[0] / range > 0.05 ||
        stddev[1] / range > 0.05 ||
        stddev[2] / range > 0.05)
        return CalibrateResult(CalibrateResult::WARNING,
            "Accelerometer seemed to be moving; consider recollecting the "
            "calibration sample.");
    
    if (abs(data.getMean()[0] - data.getMean()[1]) / range > 0.1)
        return CalibrateResult(CalibrateResult::WARNING,
            "X and Y axes differ by " + std::to_string(
            abs(data.getMean()[0] - data.getMean()[1]) / range * 100) +
            " percent. Check that accelerometer is flat.");

    return CalibrateResult::SUCCESS;
}
开发者ID:damellis,项目名称:ESP,代码行数:24,代码来源:user_accelerometer_walk_detection.cpp

示例3: computeFeatureVector_

bool PrincipalComponentAnalysis::computeFeatureVector_(const MatrixDouble &data,const UINT analysisMode) {

    trained = false;
    const UINT M = data.getNumRows();
    const UINT N = data.getNumCols();
    this->numInputDimensions = N;

    MatrixDouble msData( M, N );

    //Compute the mean and standard deviation of the input data
    mean = data.getMean();
    stdDev = data.getStdDev();

    if( normData ) {
        //Normalize the data
        for(UINT i=0; i<M; i++)
            for(UINT j=0; j<N; j++)
                msData[i][j] = (data[i][j]-mean[j]) / stdDev[j];

    } else {
        //Mean Subtract Data
        for(UINT i=0; i<M; i++)
            for(UINT j=0; j<N; j++)
                msData[i][j] = data[i][j] - mean[j];
    }

    //Get the covariance matrix
    MatrixDouble cov = msData.getCovarianceMatrix();

    //Use Eigen Value Decomposition to find eigenvectors of the covariance matrix
    EigenvalueDecomposition eig;

    if( !eig.decompose( cov ) ) {
        mean.clear();
        stdDev.clear();
        componentWeights.clear();
        sortedEigenvalues.clear();
        eigenvectors.clear();
        errorLog << "computeFeatureVector(const MatrixDouble &data,UINT analysisMode) - Failed to decompose input matrix!" << endl;
        return false;
    }

    //Get the eigenvectors and eigenvalues
    eigenvectors = eig.getEigenvectors();
    VectorDouble eigenvalues = eig.getRealEigenvalues();

    //Any eigenvalues less than 0 are not worth anything so set to 0
    for(UINT i=0; i<eigenvalues.size(); i++) {
        if( eigenvalues[i] < 0 )
            eigenvalues[i] = 0;
    }

    //Sort the eigenvalues and compute the component weights
    double sum = 0;
    UINT componentIndex = 0;
    sortedEigenvalues.clear();
    componentWeights.resize(N,0);

    while( true ) {
        double maxValue = 0;
        UINT index = 0;
        for(UINT i=0; i<eigenvalues.size(); i++) {
            if( eigenvalues[i] > maxValue ) {
                maxValue = eigenvalues[i];
                index = i;
            }
        }
        if( maxValue == 0 || componentIndex >= eigenvalues.size() ) {
            break;
        }
        sortedEigenvalues.push_back( IndexedDouble(index,maxValue) );
        componentWeights[ componentIndex++ ] = eigenvalues[ index ];
        sum += eigenvalues[ index ];
        eigenvalues[ index ] = 0; //Set the maxValue to zero so it won't be used again
    }

    double cumulativeVariance = 0;
    switch( analysisMode ) {
    case MAX_VARIANCE:
        //Normalize the component weights and workout how many components we need to use to reach the maxVariance
        numPrincipalComponents = 0;
        for(UINT k=0; k<N; k++) {
            componentWeights[k] /= sum;
            cumulativeVariance += componentWeights[k];
            if( cumulativeVariance >= maxVariance && numPrincipalComponents==0 ) {
                numPrincipalComponents = k+1;
            }
        }
        break;
    case MAX_NUM_PCS:
        //Normalize the component weights and compute the maxVariance
        maxVariance = 0;
        for(UINT k=0; k<N; k++) {
            componentWeights[k] /= sum;
            if( k < numPrincipalComponents ) {
                maxVariance += componentWeights[k];
            }
        }
        break;
    default:
//.........这里部分代码省略.........
开发者ID:GaoXiaojian,项目名称:grt,代码行数:101,代码来源:PrincipalComponentAnalysis.cpp

示例4: main

int main (int argc, const char * argv[])
{
    //Create an empty matrix double
    MatrixDouble matrix;
    
    //Resize the matrix
    matrix.resize( 100, 2 );
    
    //Set all the values in the matrix to zero
    matrix.setAllValues( 0 );
    
    //Loop over the data and set the values to random values
    UINT counter = 0;
    for(UINT i=0; i<matrix.getNumRows(); i++){
        for(UINT j=0; j<matrix.getNumCols(); j++){
            matrix[i][j] = counter++;
        }
    }
    
    //Add a new row at the very end of the matrix
    VectorDouble newRow(2);
    newRow[0] = 1000;
    newRow[1] = 2000;
    matrix.push_back( newRow );
    
    //Print the values
    cout << "Matrix Data: \n";
    for(UINT i=0; i<matrix.getNumRows(); i++){
        for(UINT j=0; j<matrix.getNumCols(); j++){
            cout << matrix[i][j] << "\t";
        }
        cout << endl;
    }
    cout << endl;
    
    //Get the second row as a vector
    VectorDouble rowVector = matrix.getRowVector( 1 );
    
    cout << "Row Vector Data: \n";
    for(UINT i=0; i<rowVector.size(); i++){
        cout << rowVector[i] << "\t";
    }
    cout << endl;
    
    //Get the second column as a vector
    VectorDouble colVector = matrix.getColVector( 1 );
    
    cout << "Column Vector Data: \n";
    for(UINT i=0; i<colVector.size(); i++){
        cout << colVector[i] << "\n";
    }
    cout << endl;
    
    //Get the mean of each column
	VectorDouble mean = matrix.getMean();
	
	cout << "Mean: \n";
    for(UINT i=0; i<mean.size(); i++){
        cout << mean[i] << "\n";
    }
    cout << endl;
	
	//Get the Standard Deviation of each column
	VectorDouble stdDev = matrix.getStdDev();
	
	cout << "StdDev: \n";
    for(UINT i=0; i<stdDev.size(); i++){
        cout << stdDev[i] << "\n";
    }
    cout << endl;
	
	//Get the covariance matrix
	MatrixDouble cov = matrix.getCovarianceMatrix();
	
	cout << "Covariance Matrix: \n";
    for(UINT i=0; i<cov.getNumRows(); i++){
        for(UINT j=0; j<cov.getNumCols(); j++){
            cout << cov[i][j] << "\t";
        }
        cout << endl;
    }
    cout << endl;

	vector< MinMax > ranges = matrix.getRanges();
	
	cout << "Ranges: \n";
    for(UINT i=0; i<ranges.size(); i++){
        cout << "i: " << i << "\tMinValue: " << ranges[i].minValue << "\tMaxValue:" << ranges[i].maxValue << "\n";
    }
    cout << endl;
    
    //Save the matrix data to a csv file
    matrix.save( "data.csv" );
    
    //load the matrix data from a csv file
    matrix.load( "data.csv" );
    
    return EXIT_SUCCESS;
}
开发者ID:AdriannaGmz,项目名称:gesture-recognition-toolkit,代码行数:99,代码来源:MatrixDoubleExample.cpp


注:本文中的MatrixDouble::getMean方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。