当前位置: 首页>>代码示例>>C++>>正文


C++ MatrixDouble::GetRows方法代码示例

本文整理汇总了C++中MatrixDouble::GetRows方法的典型用法代码示例。如果您正苦于以下问题:C++ MatrixDouble::GetRows方法的具体用法?C++ MatrixDouble::GetRows怎么用?C++ MatrixDouble::GetRows使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MatrixDouble的用法示例。


在下文中一共展示了MatrixDouble::GetRows方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: Cramer

/*!
 * Solve linear system using Cramer procedure
 *
 * \throw	ExceptionDimension	incompatible matrix dimensions
 * \throw ExceptionRuntime	Equation has either no solution or an infinity of solutions
 *
 * \param[in]	Coefficients	matrix of equations' coefficients
 * \param[in]	ConstantTerms	column matrix of constant term
 *
 * \return	solutions packed in a column matrix (SMatrixDouble)
 */
MatrixDouble LinearSystem::Cramer(const SquareMatrixDouble &Coefficients, const MatrixDouble &ConstantTerms)
{
	size_t n = Coefficients.GetRows();
	
	if ((ConstantTerms.GetRows() != n) || (ConstantTerms.GetCols() != 1))
	{
		throw ExceptionDimension(StringUTF8("LinearEquationsSystem::CramerSolver("
					"const SquareMatrixDouble *Coefficients, const MatrixDouble *ConstantTerms): ") + 
				_("invalid or incompatible matrix dimensions"));
	}
	else
	{
		double D = Coefficients.Determinant();
		
		if (D == 0.0)
		{
			throw ExceptionRuntime(_("Equation has either no solution or an infinity of solutions."));
		}
		
		MatrixDouble Solutions(n, 1, 0.0);
		
		for (size_t k = 0; k < n; k++)
		{
			SquareMatrixDouble Mk(Coefficients);
			
			for (size_t r = 0; r < n; r++)
			{
				Mk.At(r, k) = ConstantTerms.At(r, 0);
			}
			
			double Dk = Mk.Determinant();
			
			Solutions.At(k, 0) = Dk / D;
		}
		
		return Solutions;
	}
}
开发者ID:Liris-Pleiad,项目名称:libcrn,代码行数:49,代码来源:CRNEquationSolver.cpp

示例2: GaussJordan

/*!
 * Solve linear system using Gauss-Jordan procedure
 *
 * \throw	ExceptionDimension	incompatible matrix dimensions
 * \throw ExceptionRuntime	Equation has either no solution or an infinity of solutions
 *
 * \param[in]	Coefficients	matrix of equations' coefficients
 * \param[in]	ConstantTerms	column matrix of constant terms
 *
 * \return	solutions packed in a column matrix (SMatrixDouble)
 */
MatrixDouble LinearSystem::GaussJordan(const SquareMatrixDouble &Coefficients, const MatrixDouble &ConstantTerms)
{
	size_t n = Coefficients.GetRows();
		
	if (ConstantTerms.GetRows() != n)
	{
		throw ExceptionDimension(StringUTF8("LinearEquationsSystem::GaussJordanSolver("
					"const SquareMatrixDouble *Coefficients, const MatrixDouble *ConstantTerms): ") + 
				_("invalid or incompatible matrix dimensions"));
	}
	else
	{
		USquareMatrixDouble CopyCoefficients = CloneAs<SquareMatrixDouble>(Coefficients);
		UMatrixDouble CopyConstantTerms = CloneAs<MatrixDouble>(ConstantTerms);
	
		for (size_t c = 0; c < n - 1; c++)
		{
			// Search the greatest pivot in column
				
			double Pivot = CopyCoefficients->At(c, c);
			double AbsMaxPivot = fabs(Pivot);
			size_t RowIndex = c;
				
			for (size_t r = c + 1 ; r < n; r++)
			{
				double Candidate = CopyCoefficients->At(r, c);
					
				if (fabs(Candidate) > AbsMaxPivot)
				{
					Pivot = Candidate;
					AbsMaxPivot = fabs(Pivot);
					RowIndex = r;
				}
			}
			
			// If no non-null pivot found, system may have infinite number of solutions
				
			if (Pivot == 0.0)
			{
				throw ExceptionRuntime(_("Equation has either no solution or an infinity of solutions."));
			}
			
			if (RowIndex != c)
			{
				CopyCoefficients->SwapRows(c, RowIndex);
				CopyConstantTerms->SwapRows(c, RowIndex);
			}
				// Elimination
			
			for (size_t r = c + 1; r < n; r++)
			{
				double Coeff = CopyCoefficients->At(r, c);
				
				if (Coeff != 0.0)
				{
					double Scale = - Coeff / Pivot;
					
					for (size_t k = c; k < n; k++)
					{
						CopyCoefficients->IncreaseElement(r, k, CopyCoefficients->At(c, k) * Scale);
					}
					
					CopyConstantTerms->IncreaseElement(r, 0, CopyConstantTerms->At(c, 0) * Scale);
				}
			}
		}
		// End of loop for column
			
		MatrixDouble Solutions(n, 1, 0.0);
			
		Solutions.At(n - 1, 0) = CopyConstantTerms->At(n - 1, 0) / CopyCoefficients->At(n - 1, n - 1);
			
		for (auto r = int(n) - 2; r >= 0; --r)
		{
			double Cumul = 0.0;
			
			for (auto c = int(n) - 1; c > r; --c)
			{
				Cumul += CopyCoefficients->At(r, c) * Solutions.At(c, 0);
			}
				
			Solutions.At(r, 0) = (CopyConstantTerms->At(r, 0) - Cumul) / CopyCoefficients->At(r, r);
		}
			
		return Solutions;
	}
}
开发者ID:Liris-Pleiad,项目名称:libcrn,代码行数:98,代码来源:CRNEquationSolver.cpp


注:本文中的MatrixDouble::GetRows方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。