本文整理汇总了C++中MEM_NB_BLOCK::GetSysAddr方法的典型用法代码示例。如果您正苦于以下问题:C++ MEM_NB_BLOCK::GetSysAddr方法的具体用法?C++ MEM_NB_BLOCK::GetSysAddr怎么用?C++ MEM_NB_BLOCK::GetSysAddr使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MEM_NB_BLOCK
的用法示例。
在下文中一共展示了MEM_NB_BLOCK::GetSysAddr方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: MemTBeginTraining
/**
*
* This function executes receiver enable training for a specific die
*
* @param[in,out] *TechPtr - Pointer to the MEM_TECH_BLOCK
* @param[in] Pass - Pass of the receiver training
*
* @return TRUE - No fatal error occurs.
* @return FALSE - Fatal error occurs.
*/
BOOLEAN
STATIC
MemTDqsTrainRcvrEnSw (
IN OUT MEM_TECH_BLOCK *TechPtr,
IN UINT8 Pass
)
{
_16BYTE_ALIGN UINT8 PatternBuffer[3 * 64];
UINT8 TestBuffer[120];
UINT8 *PatternBufPtr[4];
UINT8 *TempPtr;
UINT32 TestAddrRJ16[4];
UINT32 TempAddrRJ16;
UINT32 RealAddr;
UINT16 CurTest[4];
UINT8 Dct;
UINT8 Receiver;
UINT8 i;
UINT8 TimesFail;
UINT8 TimesRetrain;
UINT16 RcvrEnDly;
UINT16 MaxRcvrEnDly;
UINT16 RcvrEnDlyLimit;
UINT16 MaxDelayCha;
BOOLEAN IsDualRank;
BOOLEAN S0En;
BOOLEAN S1En;
UINT8 MaxFilterDly;
MEM_DATA_STRUCT *MemPtr;
DIE_STRUCT *MCTPtr;
DCT_STRUCT *DCTPtr;
MEM_NB_BLOCK *NBPtr;
NBPtr = TechPtr->NBPtr;
MemPtr = NBPtr->MemPtr;
MCTPtr = NBPtr->MCTPtr;
TempAddrRJ16 = 0;
TempPtr = NULL;
MaxDelayCha = 0;
MaxFilterDly = TechPtr->MaxFilterDly;
RcvrEnDlyLimit = NBPtr->RcvrEnDlyLimit;
TimesRetrain = DEFAULT_TRAINING_TIMES;
IDS_OPTION_HOOK (IDS_MEM_RETRAIN_TIMES, &TimesRetrain, &MemPtr->StdHeader);
IDS_HDT_CONSOLE ("!\nStart SW RxEn training\n");
// Set environment settings before training
MemTBeginTraining (TechPtr);
PatternBufPtr[0] = PatternBufPtr[2] = PatternBuffer;
MemUFillTrainPattern (TestPattern0, PatternBufPtr[0], 64);
PatternBufPtr[1] = PatternBufPtr[3] = PatternBufPtr[0] + 128;
MemUFillTrainPattern (TestPattern1, PatternBufPtr[1], 64);
// Begin receiver enable training
AGESA_TESTPOINT (TpProcMemReceiverEnableTraining, &(MemPtr->StdHeader));
MaxRcvrEnDly = 0;
for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
IDS_HDT_CONSOLE ("!\tDct %d\n", Dct);
NBPtr->SwitchDCT (NBPtr, Dct);
DCTPtr = NBPtr->DCTPtr;
// Set training bit
NBPtr->SetBitField (NBPtr, BFDqsRcvEnTrain, 1);
// Relax Max Latency before training
NBPtr->SetMaxLatency (NBPtr, 0xFFFF);
if (Pass == FIRST_PASS) {
TechPtr->InitDQSPos4RcvrEn (TechPtr);
}
// there are four receiver pairs, loosely associated with chipselects.
Receiver = DCTPtr->Timings.CsEnabled ? 0 : 8;
for (; Receiver < 8; Receiver += 2) {
TechPtr->DqsRcvEnSaved = 0;
RcvrEnDly = RcvrEnDlyLimit;
S0En = NBPtr->GetSysAddr (NBPtr, Receiver, &TestAddrRJ16[0]);
S1En = NBPtr->GetSysAddr (NBPtr, Receiver + 1, &TestAddrRJ16[2]);
if (S0En) {
TestAddrRJ16[1] = TestAddrRJ16[0] + BIGPAGE_X8_RJ16;
}
if (S1En) {
TestAddrRJ16[3] = TestAddrRJ16[2] + BIGPAGE_X8_RJ16;
}
if (S0En && S1En) {
IsDualRank = TRUE;
} else {
IsDualRank = FALSE;
//.........这里部分代码省略.........
示例2: MemTBeginTraining
//.........这里部分代码省略.........
// Second Cacheline used for Dummy Read is the inverse of
// the first so that is is not mistaken for the real read
MemUFillTrainPattern (TestPattern0, PatternBufPtr[1] + 64, 64);
// Fill pattern for flush after every sweep
PatternBufPtr[4] = PatternBufPtr[0] + 256;
MemUFillTrainPattern (TestPattern3, PatternBufPtr[4], 64);
// Fill pattern for initial dummy read
PatternBufPtr[5] = PatternBufPtr[0] + 320;
MemUFillTrainPattern (TestPattern4, PatternBufPtr[5], 64);
// Begin receiver enable training
AGESA_TESTPOINT (TpProcMemReceiverEnableTraining, &(MemPtr->StdHeader));
for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
IDS_HDT_CONSOLE (MEM_STATUS, "\tDct %d\n", Dct);
NBPtr->SwitchDCT (NBPtr, Dct);
DCTPtr = NBPtr->DCTPtr;
// Set training bit
NBPtr->SetBitField (NBPtr, BFDqsRcvEnTrain, 1);
// Relax Max Latency before training
NBPtr->SetMaxLatency (NBPtr, 0xFFFF);
if (Pass == FIRST_PASS) {
TechPtr->InitDQSPos4RcvrEn (TechPtr);
}
// there are four receiver pairs, loosely associated with chipselects.
Receiver = DCTPtr->Timings.CsEnabled ? 0 : 8;
for (; Receiver < 8; Receiver += 2) {
S0En = NBPtr->GetSysAddr (NBPtr, Receiver, &TestAddrRJ16[0]);
S1En = NBPtr->GetSysAddr (NBPtr, Receiver + 1, &TestAddrRJ16[2]);
if (S0En) {
TestAddrRJ16[1] = TestAddrRJ16[0] + BIGPAGE_X8_RJ16;
}
if (S1En) {
TestAddrRJ16[3] = TestAddrRJ16[2] + BIGPAGE_X8_RJ16;
}
if (S0En && S1En) {
IsDualRank = TRUE;
} else {
IsDualRank = FALSE;
}
if (S0En || S1En) {
IDS_HDT_CONSOLE (MEM_STATUS, "\t\tCS %d\n", Receiver);
RcvrEnDlyLimit = 0x1FF; // @attention - limit depends on proc type
TechPtr->DqsRcvEnSaved = 0;
RcvrEnDly = RcvrEnDlyLimit;
RealAddr = 0;
TechPtr->GetFirstPassVal = FALSE;
TechPtr->DqsRcvEnFirstPassVal = 0;
TechPtr->RevertPassVal = FALSE;
TechPtr->InitializeVariablesOpt (TechPtr);
// Write the test patterns
AGESA_TESTPOINT (TpProcMemRcvrWritePattern, &(MemPtr->StdHeader));
IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tWrite to addresses: ");
for (i = (S0En ? 0 : 2); i < (S1En ? 4 : 2); i++) {
RealAddr = MemUSetUpperFSbase (TestAddrRJ16[i], MemPtr);
// One cacheline of data to be tested and one of dummy data
MemUWriteCachelines (RealAddr, PatternBufPtr[i], 2);
示例3: MemTBeginTraining
BOOLEAN
MemTTrainMaxLatency (
IN OUT MEM_TECH_BLOCK *TechPtr
)
{
UINT32 TestAddrRJ16;
UINT8 Dct;
UINT8 ChipSel;
UINT8 *PatternBufPtr;
UINT8 *TestBufferPtr;
UINT8 CurrentNbPstate;
UINT16 CalcMaxLatDly;
UINT16 MaxLatDly;
UINT16 MaxLatLimit;
UINT16 Margin;
UINT16 CurTest;
UINT16 _CL_;
UINT8 TimesFail;
UINT8 TimesRetrain;
UINT16 i;
MEM_DATA_STRUCT *MemPtr;
DIE_STRUCT *MCTPtr;
MEM_NB_BLOCK *NBPtr;
NBPtr = TechPtr->NBPtr;
MCTPtr = NBPtr->MCTPtr;
MemPtr = NBPtr->MemPtr;
TechPtr->TrainingType = TRN_MAX_READ_LATENCY;
TimesRetrain = DEFAULT_TRAINING_TIMES;
IDS_OPTION_HOOK (IDS_MEM_RETRAIN_TIMES, &TimesRetrain, &MemPtr->StdHeader);
IDS_HDT_CONSOLE (MEM_STATUS, "\nStart MaxRdLat training\n");
// Set environment settings before training
AGESA_TESTPOINT (TpProcMemMaxRdLatencyTraining, &(MemPtr->StdHeader));
MemTBeginTraining (TechPtr);
//
// Initialize the Training Pattern
//
if (AGESA_SUCCESS != NBPtr->TrainingPatternInit (NBPtr)) {
return (BOOLEAN) (MCTPtr->ErrCode < AGESA_FATAL);
}
TechPtr->PatternLength = (MCTPtr->Status[Sb128bitmode]) ? 6 : 3;
//
// Setup hardware training engine (if applicable)
//
NBPtr->FamilySpecificHook[SetupHwTrainingEngine] (NBPtr, &TechPtr->TrainingType);
MaxLatDly = 0;
_CL_ = TechPtr->PatternLength;
PatternBufPtr = TechPtr->PatternBufPtr;
TestBufferPtr = TechPtr->TestBufPtr;
//
// Begin max latency training
//
for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
if (MCTPtr->Status[Sb128bitmode] && (Dct != 0)) {
break;
}
IDS_HDT_CONSOLE (MEM_STATUS, "\tDct %d\n", Dct);
NBPtr->SwitchDCT (NBPtr, Dct);
if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
if (TechPtr->FindMaxDlyForMaxRdLat (TechPtr, &ChipSel)) {
TechPtr->ChipSel = ChipSel;
if (NBPtr->GetSysAddr (NBPtr, ChipSel, &TestAddrRJ16)) {
IDS_HDT_CONSOLE (MEM_STATUS, "\t\tCS %d\n", ChipSel);
IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tWrite to address: %04x0000\n", TestAddrRJ16);
// Write the test patterns
AGESA_TESTPOINT (TpProcMemMaxRdLatWritePattern, &(MemPtr->StdHeader));
NBPtr->WritePattern (NBPtr, TestAddrRJ16, PatternBufPtr, _CL_);
// Sweep max latency delays
NBPtr->getMaxLatParams (NBPtr, TechPtr->MaxDlyForMaxRdLat, &CalcMaxLatDly, &MaxLatLimit, &Margin);
AGESA_TESTPOINT (TpProcMemMaxRdLatStartSweep, &(MemPtr->StdHeader));
TimesFail = 0;
ERROR_HANDLE_RETRAIN_BEGIN (TimesFail, TimesRetrain)
{
MaxLatDly = CalcMaxLatDly;
for (i = 0; i < (MaxLatLimit - CalcMaxLatDly); i++) {
NBPtr->SetBitField (NBPtr, BFMaxLatency, MaxLatDly);
IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tDly %3x", MaxLatDly);
TechPtr->ResetDCTWrPtr (TechPtr, 6);
AGESA_TESTPOINT (TpProcMemMaxRdLatReadPattern, &(MemPtr->StdHeader));
NBPtr->ReadPattern (NBPtr, TestBufferPtr, TestAddrRJ16, _CL_);
AGESA_TESTPOINT (TpProcMemMaxRdLatTestPattern, &(MemPtr->StdHeader));
CurTest = NBPtr->CompareTestPattern (NBPtr, TestBufferPtr, PatternBufPtr, _CL_ * 64);
NBPtr->FlushPattern (NBPtr, TestAddrRJ16, _CL_);
if (NBPtr->IsSupported[ReverseMaxRdLatTrain]) {
// Reverse training decrements MaxLatDly whenever the test passes
// and uses the last passing MaxLatDly as left edge
if (CurTest == 0xFFFF) {
IDS_HDT_CONSOLE (MEM_FLOW, " P");
if (MaxLatDly == 0) {
break;
//.........这里部分代码省略.........