当前位置: 首页>>代码示例>>C++>>正文


C++ List::ClearTags方法代码示例

本文整理汇总了C++中List::ClearTags方法的典型用法代码示例。如果您正苦于以下问题:C++ List::ClearTags方法的具体用法?C++ List::ClearTags怎么用?C++ List::ClearTags使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在List的用法示例。


在下文中一共展示了List::ClearTags方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: MakeCopySplitAgainst

SCurve SCurve::MakeCopySplitAgainst(SShell *agnstA, SShell *agnstB,
                                    SSurface *srfA, SSurface *srfB)
{
    SCurve ret;
    ret = *this;
    ret.pts = {};

    SCurvePt *p = pts.First();
    if(!p) oops();
    SCurvePt prev = *p;
    ret.pts.Add(p);
    p = pts.NextAfter(p);

    for(; p; p = pts.NextAfter(p)) {
        List<SInter> il = {};

        // Find all the intersections with the two passed shells
        if(agnstA)
            agnstA->AllPointsIntersecting(prev.p, p->p, &il, true, false, true);
        if(agnstB)
            agnstB->AllPointsIntersecting(prev.p, p->p, &il, true, false, true);

        if(il.n > 0) {
            // The intersections were generated by intersecting the pwl
            // edge against a surface; so they must be refined to lie
            // exactly on the original curve.
            il.ClearTags();
            SInter *pi;
            for(pi = il.First(); pi; pi = il.NextAfter(pi)) {
                if(pi->srf == srfA || pi->srf == srfB) {
                    // The edge certainly intersects the surfaces that it
                    // trims (at its endpoints), but those ones don't count.
                    // They are culled later, but no sense calculating them
                    // and they will cause numerical problems (since two
                    // of the three surfaces they're refined to lie on will
                    // be identical, so the matrix will be singular).
                    pi->tag = 1;
                    continue;
                }

                Point2d puv;
                (pi->srf)->ClosestPointTo(pi->p, &puv, false);

                // Split the edge if the intersection lies within the surface's
                // trim curves, or within the chord tol of the trim curve; want
                // some slop if points are close to edge and pwl is too coarse,
                // and it doesn't hurt to split unnecessarily.
                Point2d dummy = { 0, 0 };
                int c = (pi->srf->bsp) ? pi->srf->bsp->ClassifyPoint(puv, dummy, pi->srf) : SBspUv::OUTSIDE;
                if(c == SBspUv::OUTSIDE) {
                    double d = VERY_POSITIVE;
                    if(pi->srf->bsp) d = pi->srf->bsp->MinimumDistanceToEdge(puv, pi->srf);
                    if(d > SS.ChordTolMm()) {
                        pi->tag = 1;
                        continue;
                    }
                }

                // We're keeping the intersection, so actually refine it.
                (pi->srf)->PointOnSurfaces(srfA, srfB, &(puv.x), &(puv.y));
                pi->p = (pi->srf)->PointAt(puv);
            }
            il.RemoveTagged();

            // And now sort them in order along the line. Note that we must
            // do that after refining, in case the refining would make two
            // points switch places.
            LineStart = prev.p;
            LineDirection = (p->p).Minus(prev.p);
            qsort(il.elem, il.n, sizeof(il.elem[0]), ByTAlongLine);

            // And now uses the intersections to generate our split pwl edge(s)
            Vector prev = Vector::From(VERY_POSITIVE, 0, 0);
            for(pi = il.First(); pi; pi = il.NextAfter(pi)) {
                // On-edge intersection will generate same split point for
                // both surfaces, so don't create zero-length edge.
                if(!prev.Equals(pi->p)) {
                    SCurvePt scpt;
                    scpt.tag    = 0;
                    scpt.p      = pi->p;
                    scpt.vertex = true;
                    ret.pts.Add(&scpt);
                }
                prev = pi->p;
            }
        }

        il.Clear();
        ret.pts.Add(p);
        prev = *p;
    }
    return ret;
}
开发者ID:DanLipsitt,项目名称:solvespace,代码行数:93,代码来源:boolean.cpp

示例2: AllPointsIntersecting


//.........这里部分代码省略.........
        if(axis.Cross(ab).Magnitude() < LENGTH_EPS) {
            // edge is parallel to axis of cylinder, no intersection points
            return;
        }
        // A coordinate system centered at the center of the circle, with
        // the edge under test horizontal
        Vector u, v, n = axis.WithMagnitude(1);
        u = (ab.Minus(n.ScaledBy(ab.Dot(n)))).WithMagnitude(1);
        v = n.Cross(u);
        Point2d ap = (a.Minus(center)).DotInToCsys(u, v, n).ProjectXy(),
                bp = (b.Minus(center)).DotInToCsys(u, v, n).ProjectXy(),
                sp = (start. Minus(center)).DotInToCsys(u, v, n).ProjectXy(),
                fp = (finish.Minus(center)).DotInToCsys(u, v, n).ProjectXy();

        double thetas = atan2(sp.y, sp.x), thetaf = atan2(fp.y, fp.x);

        Point2d ip[2];
        int ip_n = 0;
        if(fabs(fabs(ap.y) - radius) < LENGTH_EPS) {
            // tangent
            if(inclTangent) {
                ip[0] = Point2d::From(0, ap.y);
                ip_n = 1;
            }
        } else if(fabs(ap.y) < radius) {
            // two intersections
            double xint = sqrt(radius*radius - ap.y*ap.y);
            ip[0] = Point2d::From(-xint, ap.y);
            ip[1] = Point2d::From( xint, ap.y);
            ip_n = 2;
        }
        int i;
        for(i = 0; i < ip_n; i++) {
            double t = (ip[i].Minus(ap)).DivPivoting(bp.Minus(ap));
            // This is a point on the circle; but is it on the arc?
            Point2d pp = ap.Plus((bp.Minus(ap)).ScaledBy(t));
            double theta = atan2(pp.y, pp.x);
            double dp = WRAP_SYMMETRIC(theta  - thetas, 2*PI),
                   df = WRAP_SYMMETRIC(thetaf - thetas, 2*PI);
            double tol = LENGTH_EPS/radius;

            if((df > 0 && ((dp < -tol) || (dp > df + tol))) ||
               (df < 0 && ((dp >  tol) || (dp < df - tol))))
            {
                continue;
            }

            Vector p = a.Plus((b.Minus(a)).ScaledBy(t));

            Inter inter;
            ClosestPointTo(p, &(inter.p.x), &(inter.p.y));
            inters.Add(&inter);
        }
    } else {
        // General numerical solution by subdivision, fallback
        int cnt = 0, level = 0;
        AllPointsIntersectingUntrimmed(a, b, &cnt, &level, &inters, seg, this);
    }

    // Remove duplicate intersection points
    inters.ClearTags();
    int i, j;
    for(i = 0; i < inters.n; i++) {
        for(j = i + 1; j < inters.n; j++) {
            if(inters.elem[i].p.Equals(inters.elem[j].p)) {
                inters.elem[j].tag = 1;
            }
        }
    }
    inters.RemoveTagged();

    for(i = 0; i < inters.n; i++) {
        Point2d puv = inters.elem[i].p;

        // Make sure the point lies within the finite line segment
        Vector pxyz = PointAt(puv.x, puv.y);
        double t = (pxyz.Minus(a)).DivPivoting(ba);
        if(seg && (t > 1 - LENGTH_EPS/bam || t < LENGTH_EPS/bam)) {
            continue;
        }

        // And that it lies inside our trim region
        Point2d dummy = { 0, 0 };
        int c = bsp->ClassifyPoint(puv, dummy, this);
        if(trimmed && c == SBspUv::OUTSIDE) {
            continue;
        }

        // It does, so generate the intersection
        SInter si;
        si.p = pxyz;
        si.surfNormal = NormalAt(puv.x, puv.y);
        si.pinter = puv;
        si.srf = this;
        si.onEdge = (c != SBspUv::INSIDE);
        l->Add(&si);
    }

    inters.Clear();
}
开发者ID:blondegeek,项目名称:solvespace,代码行数:101,代码来源:raycast.cpp


注:本文中的List::ClearTags方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。