当前位置: 首页>>代码示例>>C++>>正文


C++ LayerParameter::add_top方法代码示例

本文整理汇总了C++中LayerParameter::add_top方法的典型用法代码示例。如果您正苦于以下问题:C++ LayerParameter::add_top方法的具体用法?C++ LayerParameter::add_top怎么用?C++ LayerParameter::add_top使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在LayerParameter的用法示例。


在下文中一共展示了LayerParameter::add_top方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: layer

TYPED_TEST(HDF5DataLayerTest, TestSkip) {
  typedef typename TypeParam::Dtype Dtype;
  LayerParameter param;
  param.add_top("data");
  param.add_top("label");

  HDF5DataParameter* hdf5_data_param = param.mutable_hdf5_data_param();
  int batch_size = 5;
  hdf5_data_param->set_batch_size(batch_size);
  hdf5_data_param->set_source(*(this->filename));

  Caffe::set_solver_count(8);
  for (int dev = 0; dev < Caffe::solver_count(); ++dev) {
    Caffe::set_solver_rank(dev);

    HDF5DataLayer<Dtype> layer(param);
    layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
    int label = dev;
    for (int iter = 0; iter < 1; ++iter) {
      layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_);
      for (int i = 0; i < batch_size; ++i) {
        EXPECT_EQ(1 + label, this->blob_top_label_->cpu_data()[i]);
        label = (label + Caffe::solver_count()) % (batch_size * 2);
      }
    }
  }
  Caffe::set_solver_count(1);
  Caffe::set_solver_rank(0);
}
开发者ID:BVLC,项目名称:caffe,代码行数:29,代码来源:test_hdf5data_layer.cpp

示例2: CreateLayer

TYPED_TEST(HDF5DataLayerTest, TestSkip) {
  typedef typename TypeParam::Dtype Dtype;
  LayerParameter param;
  param.set_type("HDF5Data");
  param.add_top("data");
  param.add_top("label");

  if (std::is_same<Dtype, half_fp>::value) {
    param.set_bottom_data_type(CAFFE_FLOAT);
    param.set_compute_data_type(CAFFE_FLOAT);
    param.set_top_data_type(proto_data_type<Dtype>());
  }

  HDF5DataParameter* hdf5_data_param = param.mutable_hdf5_data_param();
  int batch_size = 5;
  hdf5_data_param->set_batch_size(batch_size);
  hdf5_data_param->set_source(*(this->filename));
  int_tp num_cols = 8;
  int_tp height = 6;
  int_tp width = 5;

  Caffe::set_solver_count(8);
  for (int dev = 0; dev < Caffe::solver_count(); ++dev) {
    Caffe::set_solver_rank(dev);

    shared_ptr<LayerBase> layer = CreateLayer(param);
    layer->SetUp(this->blob_bottom_base_vec_, this->blob_top_base_vec_);
    EXPECT_EQ(this->blob_top_data_->num(), batch_size);
    EXPECT_EQ(this->blob_top_data_->channels(), num_cols);
    EXPECT_EQ(this->blob_top_data_->height(), height);
    EXPECT_EQ(this->blob_top_data_->width(), width);

    EXPECT_EQ(this->blob_top_label_->num_axes(), 2);
    EXPECT_EQ(this->blob_top_label_->shape(0), batch_size);
    EXPECT_EQ(this->blob_top_label_->shape(1), 1);

    int label = dev;
    for (int iter = 0; iter < 1; ++iter) {
      layer->Forward(this->blob_bottom_base_vec_, this->blob_top_base_vec_,
                     nullptr);
      for (int i = 0; i < batch_size; ++i) {
        EXPECT_EQ(1 + label, this->blob_top_label_->cpu_data()[i]);
        label = (label + Caffe::solver_count()) % (batch_size * 2);
      }
    }
  }
  Caffe::set_solver_count(1);
  Caffe::set_solver_rank(0);
}
开发者ID:naibaf7,项目名称:caffe,代码行数:49,代码来源:test_hdf5_data_layer.cpp

示例3: LOG

void RecurrentLayer<Dtype, MItype, MOtype>::LayerSetUp(
      const vector<Blob<MItype>*>& bottom,
      const vector<Blob<MOtype>*>& top) {
  CHECK_GE(bottom[0]->num_axes(), 2)
      << "bottom[0] must have at least 2 axes -- (#timesteps, #streams, ...)";
  T_ = bottom[0]->shape(0);
  N_ = bottom[0]->shape(1);
  LOG(INFO) << "Initializing recurrent layer: assuming input batch contains "
            << T_ << " timesteps of " << N_ << " independent streams.";

  CHECK_EQ(bottom[1]->num_axes(), 2)
      << "bottom[1] must have exactly 2 axes -- (#timesteps, #streams)";
  CHECK_EQ(T_, bottom[1]->shape(0));
  CHECK_EQ(N_, bottom[1]->shape(1));

  // If expose_hidden is set, we take as input and produce as output
  // the hidden state blobs at the first and last timesteps.
  expose_hidden_ = this->layer_param_.recurrent_param().expose_hidden();

  // Get (recurrent) input/output names.
  vector<string> output_names;
  OutputBlobNames(&output_names);
  vector<string> recur_input_names;
  RecurrentInputBlobNames(&recur_input_names);
  vector<string> recur_output_names;
  RecurrentOutputBlobNames(&recur_output_names);
  const int num_recur_blobs = recur_input_names.size();
  CHECK_EQ(num_recur_blobs, recur_output_names.size());

  // If provided, bottom[2] is a static input to the recurrent net.
  const int num_hidden_exposed = expose_hidden_ * num_recur_blobs;
  static_input_ = (bottom.size() > 2 + num_hidden_exposed);
  if (static_input_) {
    CHECK_GE(bottom[2]->num_axes(), 1);
    CHECK_EQ(N_, bottom[2]->shape(0));
  }

  // Create a NetParameter; setup the inputs that aren't unique to particular
  // recurrent architectures.
  NetParameter net_param;

  LayerParameter* input_layer_param = net_param.add_layer();
  input_layer_param->set_type("Input");
  InputParameter* input_param = input_layer_param->mutable_input_param();
  input_layer_param->add_top("X");
  BlobShape input_shape;
  for (int i = 0; i < bottom[0]->num_axes(); ++i) {
    input_shape.add_dim(bottom[0]->shape(i));
  }
  input_param->add_shape()->CopyFrom(input_shape);

  input_shape.Clear();
  for (int i = 0; i < bottom[1]->num_axes(); ++i) {
    input_shape.add_dim(bottom[1]->shape(i));
  }
  input_layer_param->add_top("cont");
  input_param->add_shape()->CopyFrom(input_shape);

  if (static_input_) {
    input_shape.Clear();
    for (int i = 0; i < bottom[2]->num_axes(); ++i) {
      input_shape.add_dim(bottom[2]->shape(i));
    }
    input_layer_param->add_top("x_static");
    input_param->add_shape()->CopyFrom(input_shape);
  }

  // Call the child's FillUnrolledNet implementation to specify the unrolled
  // recurrent architecture.
  this->FillUnrolledNet(&net_param);

  // Prepend this layer's name to the names of each layer in the unrolled net.
  const string& layer_name = this->layer_param_.name();
  if (layer_name.size()) {
    for (int i = 0; i < net_param.layer_size(); ++i) {
      LayerParameter* layer = net_param.mutable_layer(i);
      layer->set_name(layer_name + "_" + layer->name());
    }
  }

  // Add "pseudo-losses" to all outputs to force backpropagation.
  // (Setting force_backward is too aggressive as we may not need to backprop to
  // all inputs, e.g., the sequence continuation indicators.)
  vector<string> pseudo_losses(output_names.size());
  for (int i = 0; i < output_names.size(); ++i) {
    LayerParameter* layer = net_param.add_layer();
    pseudo_losses[i] = output_names[i] + "_pseudoloss";
    layer->set_name(pseudo_losses[i]);
    layer->set_type("Reduction");
    layer->add_bottom(output_names[i]);
    layer->add_top(pseudo_losses[i]);
    layer->add_loss_weight(1);
  }

  // Create the unrolled net.
  unrolled_net_.reset(new Net<Dtype>(net_param, this->device_));
  unrolled_net_->set_debug_info(
      this->layer_param_.recurrent_param().debug_info());

  // Setup pointers to the inputs.
//.........这里部分代码省略.........
开发者ID:naibaf7,项目名称:caffe,代码行数:101,代码来源:recurrent_layer.cpp

示例4: layer

TYPED_TEST(HDF5DataLayerTest, TestRead) {
  typedef typename TypeParam::Dtype Dtype;
  // Create LayerParameter with the known parameters.
  // The data file we are reading has 10 rows and 8 columns,
  // with values from 0 to 10*8 reshaped in row-major order.
  LayerParameter param;
  param.add_top("data");
  param.add_top("label");
  param.add_top("label2");

  HDF5DataParameter* hdf5_data_param = param.mutable_hdf5_data_param();
  int batch_size = 5;
  hdf5_data_param->set_batch_size(batch_size);
  hdf5_data_param->set_source(*(this->filename));
  int num_cols = 8;
  int height = 6;
  int width = 5;

  // Test that the layer setup got the correct parameters.
  HDF5DataLayer<Dtype> layer(param);
  layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
  EXPECT_EQ(this->blob_top_data_->num(), batch_size);
  EXPECT_EQ(this->blob_top_data_->channels(), num_cols);
  EXPECT_EQ(this->blob_top_data_->height(), height);
  EXPECT_EQ(this->blob_top_data_->width(), width);

  EXPECT_EQ(this->blob_top_label_->num_axes(), 2);
  EXPECT_EQ(this->blob_top_label_->shape(0), batch_size);
  EXPECT_EQ(this->blob_top_label_->shape(1), 1);

  EXPECT_EQ(this->blob_top_label2_->num_axes(), 2);
  EXPECT_EQ(this->blob_top_label2_->shape(0), batch_size);
  EXPECT_EQ(this->blob_top_label2_->shape(1), 1);

  layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);

  // Go through the data 10 times (5 batches).
  const int data_size = num_cols * height * width;
  for (int iter = 0; iter < 10; ++iter) {
    layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_);

    // On even iterations, we're reading the first half of the data.
    // On odd iterations, we're reading the second half of the data.
    // NB: label is 1-indexed
    int label_offset = 1 + ((iter % 2 == 0) ? 0 : batch_size);
    int label2_offset = 1 + label_offset;
    int data_offset = (iter % 2 == 0) ? 0 : batch_size * data_size;

    // Every two iterations we are reading the second file,
    // which has the same labels, but data is offset by total data size,
    // which is 2400 (see generate_sample_data).
    int file_offset = (iter % 4 < 2) ? 0 : 2400;

    for (int i = 0; i < batch_size; ++i) {
      EXPECT_EQ(
        label_offset + i,
        this->blob_top_label_->cpu_data()[i]);
      EXPECT_EQ(
        label2_offset + i,
        this->blob_top_label2_->cpu_data()[i]);
    }
    for (int i = 0; i < batch_size; ++i) {
      for (int j = 0; j < num_cols; ++j) {
        for (int h = 0; h < height; ++h) {
          for (int w = 0; w < width; ++w) {
            int idx = (
              i * num_cols * height * width +
              j * height * width +
              h * width + w);
            EXPECT_EQ(
              file_offset + data_offset + idx,
              this->blob_top_data_->cpu_data()[idx])
              << "debug: i " << i << " j " << j
              << " iter " << iter;
          }
        }
      }
    }
  }
}
开发者ID:Michae1Park,项目名称:caffe,代码行数:80,代码来源:test_hdf5data_layer.cpp


注:本文中的LayerParameter::add_top方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。