当前位置: 首页>>代码示例>>C++>>正文


C++ LayerParameter::add_loss_weight方法代码示例

本文整理汇总了C++中LayerParameter::add_loss_weight方法的典型用法代码示例。如果您正苦于以下问题:C++ LayerParameter::add_loss_weight方法的具体用法?C++ LayerParameter::add_loss_weight怎么用?C++ LayerParameter::add_loss_weight使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在LayerParameter的用法示例。


在下文中一共展示了LayerParameter::add_loss_weight方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: LOG

void RecurrentLayer<Dtype, MItype, MOtype>::LayerSetUp(
      const vector<Blob<MItype>*>& bottom,
      const vector<Blob<MOtype>*>& top) {
  CHECK_GE(bottom[0]->num_axes(), 2)
      << "bottom[0] must have at least 2 axes -- (#timesteps, #streams, ...)";
  T_ = bottom[0]->shape(0);
  N_ = bottom[0]->shape(1);
  LOG(INFO) << "Initializing recurrent layer: assuming input batch contains "
            << T_ << " timesteps of " << N_ << " independent streams.";

  CHECK_EQ(bottom[1]->num_axes(), 2)
      << "bottom[1] must have exactly 2 axes -- (#timesteps, #streams)";
  CHECK_EQ(T_, bottom[1]->shape(0));
  CHECK_EQ(N_, bottom[1]->shape(1));

  // If expose_hidden is set, we take as input and produce as output
  // the hidden state blobs at the first and last timesteps.
  expose_hidden_ = this->layer_param_.recurrent_param().expose_hidden();

  // Get (recurrent) input/output names.
  vector<string> output_names;
  OutputBlobNames(&output_names);
  vector<string> recur_input_names;
  RecurrentInputBlobNames(&recur_input_names);
  vector<string> recur_output_names;
  RecurrentOutputBlobNames(&recur_output_names);
  const int num_recur_blobs = recur_input_names.size();
  CHECK_EQ(num_recur_blobs, recur_output_names.size());

  // If provided, bottom[2] is a static input to the recurrent net.
  const int num_hidden_exposed = expose_hidden_ * num_recur_blobs;
  static_input_ = (bottom.size() > 2 + num_hidden_exposed);
  if (static_input_) {
    CHECK_GE(bottom[2]->num_axes(), 1);
    CHECK_EQ(N_, bottom[2]->shape(0));
  }

  // Create a NetParameter; setup the inputs that aren't unique to particular
  // recurrent architectures.
  NetParameter net_param;

  LayerParameter* input_layer_param = net_param.add_layer();
  input_layer_param->set_type("Input");
  InputParameter* input_param = input_layer_param->mutable_input_param();
  input_layer_param->add_top("X");
  BlobShape input_shape;
  for (int i = 0; i < bottom[0]->num_axes(); ++i) {
    input_shape.add_dim(bottom[0]->shape(i));
  }
  input_param->add_shape()->CopyFrom(input_shape);

  input_shape.Clear();
  for (int i = 0; i < bottom[1]->num_axes(); ++i) {
    input_shape.add_dim(bottom[1]->shape(i));
  }
  input_layer_param->add_top("cont");
  input_param->add_shape()->CopyFrom(input_shape);

  if (static_input_) {
    input_shape.Clear();
    for (int i = 0; i < bottom[2]->num_axes(); ++i) {
      input_shape.add_dim(bottom[2]->shape(i));
    }
    input_layer_param->add_top("x_static");
    input_param->add_shape()->CopyFrom(input_shape);
  }

  // Call the child's FillUnrolledNet implementation to specify the unrolled
  // recurrent architecture.
  this->FillUnrolledNet(&net_param);

  // Prepend this layer's name to the names of each layer in the unrolled net.
  const string& layer_name = this->layer_param_.name();
  if (layer_name.size()) {
    for (int i = 0; i < net_param.layer_size(); ++i) {
      LayerParameter* layer = net_param.mutable_layer(i);
      layer->set_name(layer_name + "_" + layer->name());
    }
  }

  // Add "pseudo-losses" to all outputs to force backpropagation.
  // (Setting force_backward is too aggressive as we may not need to backprop to
  // all inputs, e.g., the sequence continuation indicators.)
  vector<string> pseudo_losses(output_names.size());
  for (int i = 0; i < output_names.size(); ++i) {
    LayerParameter* layer = net_param.add_layer();
    pseudo_losses[i] = output_names[i] + "_pseudoloss";
    layer->set_name(pseudo_losses[i]);
    layer->set_type("Reduction");
    layer->add_bottom(output_names[i]);
    layer->add_top(pseudo_losses[i]);
    layer->add_loss_weight(1);
  }

  // Create the unrolled net.
  unrolled_net_.reset(new Net<Dtype>(net_param, this->device_));
  unrolled_net_->set_debug_info(
      this->layer_param_.recurrent_param().debug_info());

  // Setup pointers to the inputs.
//.........这里部分代码省略.........
开发者ID:naibaf7,项目名称:caffe,代码行数:101,代码来源:recurrent_layer.cpp


注:本文中的LayerParameter::add_loss_weight方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。