本文整理汇总了C++中LBlock::rbegin方法的典型用法代码示例。如果您正苦于以下问题:C++ LBlock::rbegin方法的具体用法?C++ LBlock::rbegin怎么用?C++ LBlock::rbegin使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类LBlock
的用法示例。
在下文中一共展示了LBlock::rbegin方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: syncForBlockEnd
bool
StupidAllocator::go()
{
// This register allocator is intended to be as simple as possible, while
// still being complicated enough to share properties with more complicated
// allocators. Namely, physical registers may be used to carry virtual
// registers across LIR instructions, but not across basic blocks.
//
// This algorithm does not pay any attention to liveness. It is performed
// as a single forward pass through the basic blocks in the program. As
// virtual registers and temporaries are defined they are assigned physical
// registers, evicting existing allocations in an LRU fashion.
// For virtual registers not carried in a register, a canonical spill
// location is used. Each vreg has a different spill location; since we do
// not track liveness we cannot determine that two vregs have disjoint
// lifetimes. Thus, the maximum stack height is the number of vregs (scaled
// by two on 32 bit platforms to allow storing double values).
graph.setLocalSlotCount(DefaultStackSlot(graph.numVirtualRegisters() - 1) + 1);
if (!init())
return false;
for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); blockIndex++) {
LBlock *block = graph.getBlock(blockIndex);
JS_ASSERT(block->mir()->id() == blockIndex);
for (size_t i = 0; i < registerCount; i++)
registers[i].set(MISSING_ALLOCATION);
for (LInstructionIterator iter = block->begin(); iter != block->end(); iter++) {
LInstruction *ins = *iter;
if (ins == *block->rbegin())
syncForBlockEnd(block, ins);
allocateForInstruction(ins);
}
}
return true;
}
示例2: dump
bool
AllocationIntegrityState::check(bool populateSafepoints)
{
MOZ_ASSERT(!instructions.empty());
#ifdef DEBUG
if (JitSpewEnabled(JitSpew_RegAlloc))
dump();
for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); blockIndex++) {
LBlock* block = graph.getBlock(blockIndex);
// Check that all instruction inputs and outputs have been assigned an allocation.
for (LInstructionIterator iter = block->begin(); iter != block->end(); iter++) {
LInstruction* ins = *iter;
for (LInstruction::InputIterator alloc(*ins); alloc.more(); alloc.next())
MOZ_ASSERT(!alloc->isUse());
for (size_t i = 0; i < ins->numDefs(); i++) {
LDefinition* def = ins->getDef(i);
MOZ_ASSERT(!def->output()->isUse());
LDefinition oldDef = instructions[ins->id()].outputs[i];
MOZ_ASSERT_IF(oldDef.policy() == LDefinition::MUST_REUSE_INPUT,
*def->output() == *ins->getOperand(oldDef.getReusedInput()));
}
for (size_t i = 0; i < ins->numTemps(); i++) {
LDefinition* temp = ins->getTemp(i);
MOZ_ASSERT_IF(!temp->isBogusTemp(), temp->output()->isRegister());
LDefinition oldTemp = instructions[ins->id()].temps[i];
MOZ_ASSERT_IF(oldTemp.policy() == LDefinition::MUST_REUSE_INPUT,
*temp->output() == *ins->getOperand(oldTemp.getReusedInput()));
}
}
}
#endif
// Check that the register assignment and move groups preserve the original
// semantics of the virtual registers. Each virtual register has a single
// write (owing to the SSA representation), but the allocation may move the
// written value around between registers and memory locations along
// different paths through the script.
//
// For each use of an allocation, follow the physical value which is read
// backward through the script, along all paths to the value's virtual
// register's definition.
for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); blockIndex++) {
LBlock* block = graph.getBlock(blockIndex);
for (LInstructionIterator iter = block->begin(); iter != block->end(); iter++) {
LInstruction* ins = *iter;
const InstructionInfo& info = instructions[ins->id()];
LSafepoint* safepoint = ins->safepoint();
if (safepoint) {
for (size_t i = 0; i < ins->numTemps(); i++) {
if (ins->getTemp(i)->isBogusTemp())
continue;
uint32_t vreg = info.temps[i].virtualRegister();
LAllocation* alloc = ins->getTemp(i)->output();
if (!checkSafepointAllocation(ins, vreg, *alloc, populateSafepoints))
return false;
}
MOZ_ASSERT_IF(ins->isCall() && !populateSafepoints,
safepoint->liveRegs().emptyFloat() &&
safepoint->liveRegs().emptyGeneral());
}
size_t inputIndex = 0;
for (LInstruction::InputIterator alloc(*ins); alloc.more(); alloc.next()) {
LAllocation oldInput = info.inputs[inputIndex++];
if (!oldInput.isUse())
continue;
uint32_t vreg = oldInput.toUse()->virtualRegister();
if (safepoint && !oldInput.toUse()->usedAtStart()) {
if (!checkSafepointAllocation(ins, vreg, **alloc, populateSafepoints))
return false;
}
// Start checking at the previous instruction, in case this
// instruction reuses its input register for an output.
LInstructionReverseIterator riter = block->rbegin(ins);
riter++;
checkIntegrity(block, *riter, vreg, **alloc, populateSafepoints);
while (!worklist.empty()) {
IntegrityItem item = worklist.popCopy();
checkIntegrity(item.block, *item.block->rbegin(), item.vreg, item.alloc, populateSafepoints);
}
}
}
}
return true;
}
示例3: reg
bool
LiveRangeAllocator<VREG>::buildLivenessInfo()
{
if (!init())
return false;
Vector<MBasicBlock *, 1, SystemAllocPolicy> loopWorkList;
BitSet *loopDone = BitSet::New(alloc(), graph.numBlockIds());
if (!loopDone)
return false;
for (size_t i = graph.numBlocks(); i > 0; i--) {
if (mir->shouldCancel("Build Liveness Info (main loop)"))
return false;
LBlock *block = graph.getBlock(i - 1);
MBasicBlock *mblock = block->mir();
BitSet *live = BitSet::New(alloc(), graph.numVirtualRegisters());
if (!live)
return false;
liveIn[mblock->id()] = live;
// Propagate liveIn from our successors to us
for (size_t i = 0; i < mblock->lastIns()->numSuccessors(); i++) {
MBasicBlock *successor = mblock->lastIns()->getSuccessor(i);
// Skip backedges, as we fix them up at the loop header.
if (mblock->id() < successor->id())
live->insertAll(liveIn[successor->id()]);
}
// Add successor phis
if (mblock->successorWithPhis()) {
LBlock *phiSuccessor = mblock->successorWithPhis()->lir();
for (unsigned int j = 0; j < phiSuccessor->numPhis(); j++) {
LPhi *phi = phiSuccessor->getPhi(j);
LAllocation *use = phi->getOperand(mblock->positionInPhiSuccessor());
uint32_t reg = use->toUse()->virtualRegister();
live->insert(reg);
}
}
// Variables are assumed alive for the entire block, a define shortens
// the interval to the point of definition.
for (BitSet::Iterator liveRegId(*live); liveRegId; liveRegId++) {
if (!vregs[*liveRegId].getInterval(0)->addRangeAtHead(inputOf(block->firstId()),
outputOf(block->lastId()).next()))
{
return false;
}
}
// Shorten the front end of live intervals for live variables to their
// point of definition, if found.
for (LInstructionReverseIterator ins = block->rbegin(); ins != block->rend(); ins++) {
// Calls may clobber registers, so force a spill and reload around the callsite.
if (ins->isCall()) {
for (AnyRegisterIterator iter(allRegisters_); iter.more(); iter++) {
if (forLSRA) {
if (!addFixedRangeAtHead(*iter, inputOf(*ins), outputOf(*ins)))
return false;
} else {
bool found = false;
for (size_t i = 0; i < ins->numDefs(); i++) {
if (ins->getDef(i)->isPreset() &&
*ins->getDef(i)->output() == LAllocation(*iter)) {
found = true;
break;
}
}
if (!found && !addFixedRangeAtHead(*iter, outputOf(*ins), outputOf(*ins).next()))
return false;
}
}
}
for (size_t i = 0; i < ins->numDefs(); i++) {
if (ins->getDef(i)->policy() != LDefinition::PASSTHROUGH) {
LDefinition *def = ins->getDef(i);
CodePosition from;
if (def->policy() == LDefinition::PRESET && def->output()->isRegister() && forLSRA) {
// The fixed range covers the current instruction so the
// interval for the virtual register starts at the next
// instruction. If the next instruction has a fixed use,
// this can lead to unnecessary register moves. To avoid
// special handling for this, assert the next instruction
// has no fixed uses. defineFixed guarantees this by inserting
// an LNop.
JS_ASSERT(!NextInstructionHasFixedUses(block, *ins));
AnyRegister reg = def->output()->toRegister();
if (!addFixedRangeAtHead(reg, inputOf(*ins), outputOf(*ins).next()))
return false;
from = outputOf(*ins).next();
} else {
from = forLSRA ? inputOf(*ins) : outputOf(*ins);
}
if (def->policy() == LDefinition::MUST_REUSE_INPUT) {
// MUST_REUSE_INPUT is implemented by allocating an output
//.........这里部分代码省略.........