当前位置: 首页>>代码示例>>C++>>正文


C++ KDTree::dimension方法代码示例

本文整理汇总了C++中KDTree::dimension方法的典型用法代码示例。如果您正苦于以下问题:C++ KDTree::dimension方法的具体用法?C++ KDTree::dimension怎么用?C++ KDTree::dimension使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在KDTree的用法示例。


在下文中一共展示了KDTree::dimension方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: BasicCopyTest

/* Tests basic behavior of the copy constructor and assignment operator. */
void BasicCopyTest() try {
#if BasicCopyTestEnabled
  PrintBanner("Basic Copy Test");

  /* For simplicity, we'll use one-dimensional KDTrees in this step. */
  KDTree<1, size_t> one;
  for (size_t i = 0; i < 10; ++i)
    one[MakePoint(2 * i)] = i; // Load with 0, 2, 4, ..., 18

  {
    /* Create a clone of one and confirm that everything copied correctly. 
     * This uses the copy constructor.
     */
    KDTree<1, size_t> clone = one;

    /* Basic checks. */
    CheckCondition(one.size() == clone.size(),           "Copy has the same number of elements as the original.");
    CheckCondition(one.empty() == clone.empty(),         "Copy and original agree on emptiness.");
    CheckCondition(one.dimension() == clone.dimension(), "Copy and original agree on dimension.");

    /* Check that everything in one is there. */
    for (size_t i = 0; i < 10; ++i)
      CheckCondition(clone.at(MakePoint(2 * i)) == i, "Element from original present in copy.");

    /* Check that nothing else is. */
    for (size_t i = 0; i < 10; ++i)
      CheckCondition(!clone.contains(MakePoint(2 * i + 1)), "Other elements not present in copy.");
  }

  {
    /* Create a clone of one and confirm that everything copied correctly. 
     * This uses the assignment operator.
     */
    KDTree<1, size_t> clone;
    clone = one;

    /* Basic checks. */
    CheckCondition(one.size() == clone.size(),           "Copy has the same number of elements as the original.");
    CheckCondition(one.empty() == clone.empty(),         "Copy and original agree on emptiness.");
    CheckCondition(one.dimension() == clone.dimension(), "Copy and original agree on dimension.");

    /* Check that everything in one is there. */
    for (size_t i = 0; i < 10; ++i)
      CheckCondition(clone.at(MakePoint(2 * i)) == i, "Element from original present in copy.");

    /* Check that nothing else is. */
    for (size_t i = 0; i < 10; ++i)
      CheckCondition(!clone.contains(MakePoint(2 * i + 1)), "Other elements not present in copy.");
  }

  EndTest();
#else
  TestDisabled("BasicCopyTest");
#endif
} catch (const exception& e) {
  FailTest(e);
}
开发者ID:deerishi,项目名称:coursework,代码行数:58,代码来源:test-harness.cpp

示例2: ConstKDTreeTest

/* A basic test that creates a const KDTree and a non-const KDTree to ensure
 * the class still compiles properly. It also tests the the const version of
 * at is working correctly on the basic KDTree tests.
 */
void ConstKDTreeTest() try {
#if ConstKDTreeTestEnabled
  PrintBanner("Const KDTree Test");

  /* Build the data set. */
  const double dataPoints[][4] = { 
    {0, 0, 0, 0},
    {0, 0, 0, 1},
    {0, 0, 1, 0},
    {0, 0, 1, 1}
  };

  KDTree<4, size_t> kd;
  for (size_t i = 0; i < 4; ++i)
    kd.insert(PointFromRange<4>(dataPoints[i], dataPoints[i] + 4), i);
  
  /* Check that the code compiles for the non-const version. */
  kd.dimension();
  kd.size();
  kd.empty();
  kd.at(PointFromRange<4>(dataPoints[0], dataPoints[0] + 4)) = 100;

  const KDTree<4, size_t>& const_kd = kd;
  
  /* Check that the code compiles for the const version. */
  const_kd.dimension();
  const_kd.size();
  const_kd.empty();
  const_kd.at(PointFromRange<4>(dataPoints[0], dataPoints[0] + 4));
  
  CheckCondition(true, "Const code compiles.");
  
  /* Run the basic KD Tree tests using a const KD Tree. */
  CheckCondition(const_kd.contains(PointFromRange<4>(dataPoints[0], dataPoints[0] + 4)), "Const KD tree has element zero.");
  CheckCondition(const_kd.contains(PointFromRange<4>(dataPoints[1], dataPoints[1] + 4)), "Const KD tree has element one.");
  CheckCondition(const_kd.contains(PointFromRange<4>(dataPoints[2], dataPoints[2] + 4)), "Const KD tree has element two.");
  CheckCondition(const_kd.contains(PointFromRange<4>(dataPoints[3], dataPoints[3] + 4)), "Const KD tree has element three.");

  /* Make sure that the values of these points are correct. */
  CheckCondition(const_kd.at(PointFromRange<4>(dataPoints[0], dataPoints[0] + 4)) == 100, "Const KD tree has correct values.");
  for (size_t i = 1; i < 4; ++i)
    CheckCondition(const_kd.at(PointFromRange<4>(dataPoints[i], dataPoints[i] + 4)) == i, "Const KD tree has correct values.");

  EndTest();
#else
  TestDisabled("ConstKDTreeTest");
#endif
} catch (const exception& e) {
  cout << "Note: KD tree lookup failed, but const code compiles." << endl;
  FailTest(e);
}
开发者ID:deerishi,项目名称:coursework,代码行数:55,代码来源:test-harness.cpp

示例3: MutatingKDTreeTest

/* This test actively mutates the elements of the KDTree using
 * operator[].  If you are failing this test, check to make sure
 * that your implementation of operator[] correctly allows for
 * mutation and that it inserts elements if they don't already
 * exist.
 */
void MutatingKDTreeTest() try {
#if MutatingKDTreeTestEnabled
  PrintBanner("Mutating KDTree Test");

  /* Build the data set. */
  const double dataPoints[8][3] = { 
    {0, 0, 0},
    {0, 0, 1},
    {0, 1, 0},
    {0, 1, 1},
    {1, 0, 0},
    {1, 0, 1},
    {1, 1, 0},
    {1, 1, 1},
  };

  /* Add points using []. */
  KDTree<3, size_t> kd;
  for (size_t i = 0; i < 8; ++i)
    kd[PointFromRange<3>(dataPoints[i], dataPoints[i] + 3)] = i;

  /* Basic checks. */
  CheckCondition(kd.dimension() == 3, "Dimension is three.");
  CheckCondition(kd.size() == 8,      "New KD tree has the right number of elements.");
  CheckCondition(!kd.empty(),         "New KD tree is nonempty.");

  /* Make sure everything can be found. */
  for (size_t i = 0; i < kd.size(); ++i)
    CheckCondition(kd.contains(PointFromRange<3>(dataPoints[i], dataPoints[i] + 3)), "Lookup succeeded.");

  /* Change every other element to have key 0. */
  for (size_t i = 0; i < 8; i += 2)
    kd[PointFromRange<3>(dataPoints[i], dataPoints[i] + 3)] = 0;

  /* Check that the keys are right. */
  for (size_t i = 1; i < 8; i += 2)
    CheckCondition(kd[PointFromRange<3>(dataPoints[i], dataPoints[i] + 3)] == i, "Keys are correct for odd elements.");

  /* Check that the keys are right. */
  for (size_t i = 0; i < 8; i += 2)
    CheckCondition(kd[PointFromRange<3>(dataPoints[i], dataPoints[i] + 3)] == 0, "Keys are correct for even elements.");

  EndTest();
#else
  TestDisabled("MutatingKDTreeTest");
#endif
} catch (const exception& e) {
  FailTest(e);
}
开发者ID:deerishi,项目名称:coursework,代码行数:55,代码来源:test-harness.cpp

示例4: ModerateKDTreeTest

/* A trickier test that involves looking up nonexistent elements and working with a
 * larger data set.
 */
void ModerateKDTreeTest() try {
#if ModerateKDTreeTestEnabled
  PrintBanner("Moderate KDTree Test");

  /* Build the data set. */
  const double dataPoints[][4] = { 
    {0, 0, 0, 0},
    {0, 0, 0, 1},
    {0, 0, 1, 0},
    {0, 0, 1, 1},
    {0, 1, 0, 0},
    {0, 1, 0, 1},
    {0, 1, 1, 0},
    {0, 1, 1, 1},
    {1, 0, 0, 0},
    {1, 0, 0, 1},
    {1, 0, 1, 0},
    {1, 0, 1, 1},
    {1, 1, 0, 0},
    {1, 1, 0, 1},
    {1, 1, 1, 0},
    {1, 1, 1, 1},
  };

  KDTree<4, size_t> kd;
  for (size_t i = 0; i < 16; ++i)
    kd.insert(PointFromRange<4>(dataPoints[i], dataPoints[i] + 4), i);

  /* Check that basic properties hold. */
  CheckCondition(kd.dimension() == 4, "Dimension is four.");
  CheckCondition(kd.size() == 16,     "New KD tree has the right number of elements.");
  CheckCondition(!kd.empty(),         "New KD tree is nonempty.");

  /* Make sure that the values of these points are correct. */
  for (size_t i = 0; i < 16; ++i)
    CheckCondition(kd.at(PointFromRange<4>(dataPoints[i], dataPoints[i] + 4)) == i, "New KD tree has correct values.");

  /* Try looking up some nonexistent elements and see what happens. */
  CheckCondition(!kd.contains(MakePoint(1.0, 1.0, 1.0,  0.5)), "Nonexistent elements aren't in the tree.");
  CheckCondition(!kd.contains(MakePoint(0.0, 0.0, 0.0, -0.5)), "Nonexistent elements aren't in the tree.");
  
  EndTest();
#else
  TestDisabled("ModerateKDTreeTest");
#endif
} catch (const exception& e) {
  FailTest(e);
}
开发者ID:deerishi,项目名称:coursework,代码行数:51,代码来源:test-harness.cpp

示例5: HarderKDTreeTest

/* This test still uses just the basic functionality, but it hammers it a bit more
 * by checking for strange edge cases like duplicated elements.
 */
void HarderKDTreeTest() try {
#if HarderKDTreeTestEnabled
  PrintBanner("Harder KDTree Test");

  /* Build the data set. */
  const double dataPoints[][4] = { 
    {0, 0, 0, 0},
    {0, 1, 0, 1},
    {0, 0, 0, 0}, // Duplicate!
    {0, 1, 0, 1}, // Duplicate!
    {0, 1, 1, 0},
    {1, 0, 1, 0},   
  };
  KDTree<4, size_t> kd;
  for (size_t i = 0; i < 6; ++i)
    kd.insert(PointFromRange<4>(dataPoints[i], dataPoints[i] + 4), i);

  /* Check basic properties. */
  CheckCondition(kd.dimension() == 4, "Dimension is four.");
  CheckCondition(kd.size() == 4,      "New KD tree has the right number of elements (no duplicates).");
  CheckCondition(!kd.empty(),         "New KD tree is nonempty.");

  /* Make sure that elements are still there, without checking values. */
  for (size_t i = 0; i < 6; ++i)
    CheckCondition(kd.contains(PointFromRange<4>(dataPoints[i], dataPoints[i] + 4)), "New KD tree has original elems.");

  /* Check that the elements have the correct keys.  Elements [2, 6) should have the
   * correct keys, but elements 0 and 1 will have the keys of elements 2 and 3 because
   * they were overwritten.
   */
  for (size_t i = 2; i < 6; ++i)
    CheckCondition(kd.at(PointFromRange<4>(dataPoints[i], dataPoints[i] + 4)) == i, "KD tree has correct labels.");
  for (size_t i = 0; i < 2; ++i)
    CheckCondition(kd.at(PointFromRange<4>(dataPoints[i], dataPoints[i] + 4)) == i + 2, "Insert overwrites old labels.");

  EndTest();
#else
  TestDisabled("HarderKDTreeTest");
#endif
} catch (const exception& e) {
  FailTest(e);
}
开发者ID:deerishi,项目名称:coursework,代码行数:45,代码来源:test-harness.cpp

示例6: BasicKDTreeTest

/* Basic test: Can we build a small tree and look up the elements it contains? */
void BasicKDTreeTest() try {
#if BasicKDTreeTestEnabled
  PrintBanner("Basic KDTree Test");

  /* Construct the KDTree. */
  KDTree<3, size_t> kd;
  CheckCondition(true, "KDTree construction completed.");

  /* Check basic properties of the KDTree. */
  CheckCondition(kd.dimension() == 3, "Dimension is three.");
  CheckCondition(kd.size() == 0,      "New KD tree has no elements.");
  CheckCondition(kd.empty(),          "New KD tree is empty.");

  /* Add some elements. */
  const double dataPoints[3][3] = { 
    {1, 0, 0},
    {0, 1, 0},
    {0, 0, 1}
  };
  for (size_t i = 0; i < 3; ++i)
    kd.insert(PointFromRange<3>(dataPoints[i], dataPoints[i] + 3), i);

  /* Check basic properties again. */
  CheckCondition(kd.size() == 3, "After adding three elements, KDTree has size 3.");
  CheckCondition(!kd.empty(),    "After adding three elements, KDTree is not empty.");

  /* Make sure that the elements we built the tree out of are still there. */
  CheckCondition(kd.contains(PointFromRange<3>(dataPoints[0], dataPoints[0] + 3)), "New KD tree has element zero.");
  CheckCondition(kd.contains(PointFromRange<3>(dataPoints[1], dataPoints[1] + 3)), "New KD tree has element one.");
  CheckCondition(kd.contains(PointFromRange<3>(dataPoints[2], dataPoints[2] + 3)), "New KD tree has element two.");

  /* Make sure that the values of these points are correct. */
  for (size_t i = 0; i < 3; ++i)
    CheckCondition(kd.at(PointFromRange<3>(dataPoints[i], dataPoints[i] + 3)) == i, "New KD tree has correct values.");

  EndTest();
#else
  TestDisabled("BasicKDTreeTest");
#endif
} catch (const exception& e) {
  FailTest(e);
}
开发者ID:deerishi,项目名称:coursework,代码行数:43,代码来源:test-harness.cpp

示例7: EdgeCaseKDTreeTest

/* This test builds a KDTree where the data has the same values everywhere except 
 * along one coordinate axis.  If you are failing this test case, make sure that
 * your implementation of find() descends into the left subtree only if the current
 * coordinate is _strictly less_ than the partition point's coordinate.
 */
void EdgeCaseKDTreeTest() try {
#if EdgeCaseKDTreeTestEnabled
  PrintBanner("Edge Case KDTree Test");

  /* Build the data set. */
  const double dataPoints[8][3] = { 
    {0, 0, 0},
    {0, 1, 0},
    {0, 2, 0},
    {0, 3, 0},
    {0, 4, 0},
    {0, 5, 0},
    {0, 6, 0},
    {0, 7, 0},
  };

  /* Add points. */
  KDTree<3, size_t> kd;
  for (size_t i = 0; i < 8; ++i)
    kd.insert(PointFromRange<3>(dataPoints[i], dataPoints[i] + 3), i);

  /* Basic checks. */
  CheckCondition(kd.dimension() == 3, "Dimension is three.");
  CheckCondition(kd.size() == 8,      "New KD tree has the right number of elements.");
  CheckCondition(!kd.empty(),         "New KD tree is nonempty.");

  /* Make sure everything can be found. */
  for (size_t i = 0; i < kd.size(); ++i)
    CheckCondition(kd.contains(PointFromRange<3>(dataPoints[i], dataPoints[i] + 3)), "Lookup succeeded.");

  EndTest();
#else
  TestDisabled("EdgeCaseTreeTest");
#endif
} catch (const exception& e) {
  FailTest(e);
}
开发者ID:deerishi,项目名称:coursework,代码行数:42,代码来源:test-harness.cpp


注:本文中的KDTree::dimension方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。