当前位置: 首页>>代码示例>>C++>>正文


C++ KDTree::build方法代码示例

本文整理汇总了C++中KDTree::build方法的典型用法代码示例。如果您正苦于以下问题:C++ KDTree::build方法的具体用法?C++ KDTree::build怎么用?C++ KDTree::build使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在KDTree的用法示例。


在下文中一共展示了KDTree::build方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: box

TEST(KDTree, shouldSearchInTree) {

  KDTree tree;

  vector<RTShape*> shapes;
  RTSphere sphere0(Vector(2.5, 2.5, 2.5), 2.4);
  RTSphere sphere1(Vector(2.5, 2.5, 7.5), 2.4);
  RTSphere sphere2(Vector(2.5, 7.5, 7.5), 2.4);
  RTSphere sphere3(Vector(2.5, 7.5, 2.5), 2.4);
  RTSphere sphere4(Vector(7.5, 2.5, 2.5), 2.4);
  RTSphere sphere5(Vector(7.5, 2.5, 7.5), 2.4);
  RTSphere sphere6(Vector(7.5, 7.5, 7.5), 2.4);
  RTSphere sphere7(Vector(7.5, 7.5, 2.5), 2.4);
  shapes.push_back(&sphere0);
  shapes.push_back(&sphere1);
  shapes.push_back(&sphere2);
  shapes.push_back(&sphere3);
  shapes.push_back(&sphere4);
  shapes.push_back(&sphere5);
  shapes.push_back(&sphere6);
  shapes.push_back(&sphere7);

  BoundingBox box(Vector(0,0,0), Vector(10,10,10));
  tree.setBoundingBox(box);
  tree.setTerminationCondition(1);
  tree.build(shapes, 0);

  Ray ray(Vector(7.5, 7.5, -2 ), Vector(0,0,1));
  IntersectionPtr intersection = tree.intersect(ray);
  
  CHECK( intersection != nullptr );
  CHECK( intersection->getShape() == &sphere7 );

}
开发者ID:havardh,项目名称:ECE594Q,代码行数:34,代码来源:KDTreeTest.cpp

示例2: triangle

TEST(KDTree, mixingTrianglesAndSphereIsNotAProblem) {
  
  KDTree tree;
  vector<RTShape*> shapes;
  RTTriangle triangle(Vector(0.1,0.1,0.1), Vector(1,1,1), Vector(0.1,2,0.1));
  RTSphere sphere(Vector(-1,-1,-1), 1);
  shapes.push_back(&triangle);
  shapes.push_back(&sphere);

  BoundingBox box(Vector(-2,-2,-2), Vector(2,4,2));
  tree.setBoundingBox(box);
  tree.build(shapes, 0);
  
  CHECK_EQUAL( 1, tree.getLeft()->size() );
  CHECK_EQUAL( 1, tree.getRight()->size() );

}
开发者ID:havardh,项目名称:ECE594Q,代码行数:17,代码来源:KDTreeTest.cpp

示例3: kNearestItems

//=======================================================================//
void stitch::Vec3::relaxEquidistantVectorsII(std::vector<stitch::Vec3> &vectors, uint32_t numIterations)
{
    const uint32_t numVectors = vectors.size();
    
    for (uint32_t iterationsDone=0; iterationsDone<numIterations; ++iterationsDone)
    {
        float minResult=0.0f;
        float maxResult=0.0f;
        float sumResult=0.0f;
        
        KDTree kdTree;
        
        for (uint32_t acteeVectorNum=0; acteeVectorNum<numVectors; ++acteeVectorNum)
        {
            kdTree.addItem(new BoundingVolume(vectors[acteeVectorNum], 0.0f, acteeVectorNum));
        }
        
        std::vector<stitch::Vec3> splitAxisVec;
        splitAxisVec.push_back(Vec3(1.0f, 0.0f, 0.0f));
        splitAxisVec.push_back(Vec3(0.0f, 1.0f, 0.0f));
        splitAxisVec.push_back(Vec3(0.0f, 0.0f, 1.0f));
        
        kdTree.build(KDTREE_DEFAULT_CHUNK_SIZE, 0, 1000, splitAxisVec);
        
        
        for (uint32_t acteeVectorNum=0; acteeVectorNum<numVectors; ++acteeVectorNum)
        {
            stitch::Vec3 relaxDelta;//Initialised to zero in the constructor.
            float minActDistance=10.0;//Some large initial distance.
            
            KNearestItems kNearestItems(vectors[acteeVectorNum], 1.0f, numVectors/100);
            kdTree.getNearestK(&kNearestItems);
            
            const uint32_t numNearestItems=kNearestItems.numItems_;
            for (uint32_t i=0; i<numNearestItems; ++i)
            {
                uint32_t actingVectorNum=kNearestItems.heapArray_[i].second->userIndex_;
                
                if (actingVectorNum!=acteeVectorNum)
                {
                    const float actDistance=(kNearestItems.heapArray_[i].second->centre_-vectors[acteeVectorNum]).lengthSq() / kNearestItems.searchRadiusSq_;
                    const float actWeight=1.0f - actDistance;
                    stitch::Vec3 actNormal=(vectors[acteeVectorNum] - vectors[actingVectorNum]);
                    actNormal.normalise();
                    
                    relaxDelta+=actNormal * (actWeight);
                    
                    if (actDistance < minActDistance) minActDistance=actDistance;
                }
            }
            
            vectors[acteeVectorNum] += relaxDelta*sqrtf(minActDistance*kNearestItems.searchRadiusSq_)*0.1;//+Vec3::randNorm()*0.005*minActDistance;
            vectors[acteeVectorNum].normalise();
            
            if (acteeVectorNum>0)
            {
                sumResult+=minActDistance;
                if (minActDistance<minResult) minResult=minActDistance;
                if (minActDistance>maxResult) maxResult=minActDistance;
            } else
            {
                sumResult=minResult=maxResult=minActDistance;
            }
        }
        
        //std::cout << "relaxActingDistance = ["  << minResult << "|" << (sumResult/numVectors) << "|" << maxResult << "]\n";
        //std::cout.flush();
    }
}
开发者ID:bduvenhage,项目名称:stitch-engine,代码行数:70,代码来源:Vec3.cpp

示例4: main

int main(int argc, char** argv) {

  std::ifstream imageFile;
  std::ifstream labelFile;

  if(argc != 5) {
    std::cerr << "Invalid command." << std::endl;
    return -1;
  }

  // Open training images and their labels for reading.
  imageFile.open(argv[1], std::ios::binary);
  labelFile.open(argv[2], std::ios::binary);

  labelFile.seekg(8);

  BitInputStream* input = new BitInputStream(imageFile);
  BitInputStream* label = new BitInputStream(labelFile);

  // Get the magic number, the rows, and the columns of each training image. 
  int magic = input->readInt();
  int total = input->readInt();
  std::cerr << "Loading training images" << std::endl;
  std::cerr << "Total image: " << total << std::endl;
  int rows = input->readInt();
  std::cerr << "Each image contains " << rows << " rows." << std::endl;
  int columns = input->readInt();
  std::cerr << "Each image contains " << columns << " columns." << std::endl;

  // Load the training data to memory.
  Training* training = new Training(total, rows * columns);
  for(int i = 0; i < total; i++) {
    int lbl = (int)(label->readChar());
    TRPoint* point = new TRPoint(lbl, rows * columns, i);
    for(int j = 0; j < (rows * columns); j++) {
      int pixel = (int)(input->readChar());
      point->addPixel(pixel);
    }
    training->addElement(point);
  }
  imageFile.close(); labelFile.close();


  std::ifstream testImageFile;
  std::ifstream testLabelFile;

  // Open testing images and their actual labels for reading.
  testImageFile.open(argv[3], std::ios::binary);
  testLabelFile.open(argv[4], std::ios::binary); testLabelFile.seekg(8);

  input = new BitInputStream(testImageFile);
  label = new BitInputStream(testLabelFile);

  magic = input->readInt();
  total = input->readInt();
  std::cerr << "Loading testing images" << std::endl;
  std::cerr << "Total image: " << total << std::endl;
  rows = input->readInt();
  std::cerr << "Each image contains " << rows << " rows." << std::endl;
  columns = input->readInt();
  std::cerr << "Each image contains " << columns << " columns." << std::endl;

  // Construct the K-D for nearest neighbor search.
  std::cerr << "Please enter the number of elements in each leaf for your K-D tree: ";
  std::string numImages;
  getline(std::cin, numImages); 
  std::cerr << "Ok, at least " << atoi(numImages.c_str()) << " images." << std::endl;
  std::cerr << "Constructing K-D tree for training set." << std::endl;
  KDTree* tree = new KDTree();
  tree->root = tree->build(tree->root, training, training->size(), atoi(numImages.c_str()));

  // Load the testing data to memory.
  Training* testing = new Training(total, rows * columns);
  for(int i = 0; i < total; i++) {
    int lbl = (int)(label->readChar());
    TRPoint* point = new TRPoint(lbl, rows * columns);
    for(int j = 0; j < (rows * columns); j++) {
      int pixel = (int)(input->readChar());
      point->addPixel(pixel);
    }
    testing->addElement(point);
  }
  testImageFile.close(); testLabelFile.close();

  // Loading the actual true nearest neighbor of each testing images to memory.
  std::ifstream actualLabels;
  actualLabels.open("actual");
  std::string in;
  int* trueLabels = new int[total];
  int index = 0;
  for(int i = 0; getline(actualLabels, in); i++) trueLabels[i] = atoi(in.c_str());

  int errors = 0;
  int notTrueNN = 0;

  // Perform the nearest neighbor search.
  for(int o = 0; o < testing->size(); o++) {
    std::cerr << "classifying image " << o+1 << std::endl;
    int currentDist = INT_MAX;
    int currentLabel = -1;
//.........这里部分代码省略.........
开发者ID:kjyang,项目名称:knn,代码行数:101,代码来源:driver2.cpp


注:本文中的KDTree::build方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。