本文整理汇总了C++中ImageReader::indexAt方法的典型用法代码示例。如果您正苦于以下问题:C++ ImageReader::indexAt方法的具体用法?C++ ImageReader::indexAt怎么用?C++ ImageReader::indexAt使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ImageReader
的用法示例。
在下文中一共展示了ImageReader::indexAt方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: cropMask
void ShapeEstimation::cropMask(ImageReader mask, std::vector<float> &pixelLuminances){
int rows = mask.getImageHeight();
int cols = mask.getImageWidth();
for(int row = 0; row < rows; row++){
for(int col = 0; col < cols; col++){
QColor maskColor = QColor(mask.pixelAt(row, col));
int index = mask.indexAt(row, col);
if(maskColor.red() > 150){
} else {
if(DEPTHMAPBACKGROUND){
pixelLuminances[index] = 1.0f;
} else {
pixelLuminances[index] = 0.0f;
}
}
}
}
}
示例2: estimateShape
void ShapeEstimation::estimateShape(ImageReader imageIn, ImageReader mask, std::vector<float>& depthMap, std::vector<Vector3f>& normalMap, std::vector<float> &gradientX, std::vector<float> &gradientY){
BilateralFilter bf;
int rows = imageIn.getImageHeight();
int cols = imageIn.getImageWidth();
float sigma = 0.0f;
std::vector<float> luminances = computePixelLuminance(imageIn, mask, sigma);
m_luminances = luminances;
sigmoidalCompression(luminances, sigma);
std::cout << rows << " " << cols << std::endl;
float bilateralSigmaSpatial = m_bilateralSmoothing * float(cols);
float bilateralSigmaL = 255.0f;
std::cout << "convolve" << std::endl;
luminances = bf.convolve(imageIn, luminances, bilateralSigmaSpatial, bilateralSigmaL);
std::cout << "inversion" << std::endl;
sigmoidalInversion(luminances, sigma);
//cropMask(mask, luminances);
std::vector<Vector3f> normals = gradientField(mask, luminances, gradientX, gradientY);
if(DEBUG){
QImage output(cols, rows, QImage::Format_RGB32);
QRgb *depthMap = reinterpret_cast<QRgb *>(output.bits());
for(int i = 0; i < rows; i++){
for(int j = 0; j < cols; j++){
int index = imageIn.indexAt(i, j);
float color = luminances[index] * 255.0f;
QColor colorOut = QColor(floor(color), floor(color), floor(color));
depthMap[imageIn.indexAt(i, j)] = colorOut.rgb();
}
}
output.save("images/depthMap.png");
}
// write out normal map
if(DEBUG){
float maxRed = 0.0f;
float maxGreen = 0.0f;
float minRed = 10000.0f;
float minGreen = 10000.0f;
for(int i = 0; i < rows; i++){
for(int j = 0; j < cols; j++){
int index = imageIn.indexAt(i, j);
float red = normals[index](0);
if(red > maxRed){
maxRed = red;
}
if(red < minRed){
minRed = red;
}
float green = normals[index](1) ;
if(green > maxGreen){
maxGreen = green;
}
if(green < minGreen){
minGreen = green;
}
}
}
QImage output(cols, rows, QImage::Format_RGB32);
QRgb *normalMap = reinterpret_cast<QRgb *>(output.bits());
for(int i = 0; i < rows; i++){
for(int j = 0; j < cols; j++){
int index = mask.indexAt(i, j);
QColor colorOut = QColor(0,0,0);
if(QColor(mask.pixelAt(i,j)).red() > 150){
float red = (255) * (normals[index](0) - minRed)/(maxRed - minRed);
float green = (255) * (normals[index](1) - minGreen)/(maxGreen - minGreen);
float blue = normals[index](2) * 255.0f;
colorOut = QColor(fabs(floor(red)), fabs(floor(green)), floor(blue));
}
normalMap[mask.indexAt(i, j)] = colorOut.rgb();
}
}
output.save("images/normalmap.png");
}
depthMap = luminances;
normalMap = normals;
}
示例3: fabs
std::vector<Vector3f> ShapeEstimation::gradientField(ImageReader mask, std::vector<float> &pixelLuminances, std::vector<float> &gradientX, std::vector<float> &gradientY){
int rows = mask.getImageHeight();
int cols = mask.getImageWidth();
float gxNormalize = 0.0f;
float gyNormalize = 0.0f;
for(int row = 0; row < rows; row++){
for(int col = 0; col < cols; col++){
int index = mask.indexAt(row, col);
if(row + 1 < rows){
int indexUp = mask.indexAt(row + 1, col);
float dY = pixelLuminances[indexUp] - pixelLuminances[index];
gradientY.push_back(dY);
if(fabs(dY) > gyNormalize){
gyNormalize = fabs(dY);
}
} else {
gradientY.push_back(0.0f);
}
if(col + 1 < cols){
int indexRight = mask.indexAt(row, col+1);
float dX = pixelLuminances[indexRight] - pixelLuminances[index];
gradientX.push_back(dX);
if(fabs(dX) > gxNormalize){
gxNormalize = fabs(dX);
}
} else {
gradientX.push_back(0.0f);
}
}
}
assert(gradientX.size() == gradientY.size());
for(int i = 0; i < gradientX.size(); i++){
gradientX[i] = gradientReshapeRecursive(gradientX[i]/gxNormalize, m_curvature) * gxNormalize;
}
for(int i = 0; i < gradientY.size(); i++){
gradientY[i] = gradientReshapeRecursive(gradientY[i]/gyNormalize, m_curvature) * gyNormalize;
}
std::vector<Vector3f> normals;
for(int i = 0; i < rows; i++){
for(int j = 0; j < cols; j++){
QColor maskColor = QColor(mask.pixelAt(i,j));
if(maskColor.red() > 150){
Eigen::Vector3f gx = Vector3f(1.0f, 0.0f, gradientX[mask.indexAt(i,j)]);
Eigen::Vector3f gy = Vector3f(0.0f, 1.0f, gradientY[mask.indexAt(i,j)]);
Eigen::Vector3f normal = (gx.cross(gy));
normal = normal.normalized();
normals.push_back(normal);
} else {
normals.push_back(Vector3f(0.0,0.0,0.0));
}
}
}
//pixelLuminances = gradientX;
return normals;
}