当前位置: 首页>>代码示例>>C++>>正文


C++ GraphCopy::delEdge方法代码示例

本文整理汇总了C++中GraphCopy::delEdge方法的典型用法代码示例。如果您正苦于以下问题:C++ GraphCopy::delEdge方法的具体用法?C++ GraphCopy::delEdge怎么用?C++ GraphCopy::delEdge使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GraphCopy的用法示例。


在下文中一共展示了GraphCopy::delEdge方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: callAndDelete

void UpwardPlanarSubgraphModule::callAndDelete(
	GraphCopy &GC,
	List<edge> &delOrigEdges)
{
	List<edge> delEdges;

	call(GC, delEdges);

	ListConstIterator<edge> it;
	for(it = delEdges.begin(); it.valid(); ++it) {
		edge eCopy = *it;

		delOrigEdges.pushBack(GC.original(eCopy));
		GC.delEdge(eCopy);
	}
}
开发者ID:mneumann,项目名称:tulip,代码行数:16,代码来源:UpwardPlanarSubgraphModule.cpp

示例2: getSpanTree

void FUPSSimple::getSpanTree(GraphCopy &GC, List<edge> &delEdges, bool random)
{
	if (GC.numberOfNodes() == 1)
		return; // nothing to do

	node s;
	hasSingleSource(GC, s);
	NodeArray<bool> visited(GC, false);
	EdgeArray<bool> isTreeEdge(GC,false);
	List<node> toDo;

	//mark the incident edges e1..e_i of super source s and the incident edges of the target node of the edge e1.._e_i as tree edge.
	visited[s] = true;
	for(adjEntry adj : s->adjEdges) {
		isTreeEdge[adj] = true;
		visited[adj->theEdge()->target()];
		for(adjEntry adjTmp : adj->theEdge()->target()->adjEdges) {
			isTreeEdge[adjTmp] = true;
			node tgt = adjTmp->theEdge()->target();
			if (!visited[tgt]) {
				toDo.pushBack(tgt);
				visited[tgt] = true;
			}
		}
	}

	//traversing with dfs
	for(node start : toDo) {
		for(adjEntry adj : start->adjEdges) {
			node v = adj->theEdge()->target();
			if (!visited[v])
				dfs_visit(GC, adj->theEdge(), visited, isTreeEdge, random);
		}
	}

	// delete all non tree edgesEdges to obtain a span tree
	List<edge> l;
	for(edge e : GC.edges) {
		if (!isTreeEdge[e])
			l.pushBack(e);
	}
	while (!l.empty()) {
		edge e = l.popFrontRet();
		delEdges.pushBack(GC.original(e));
		GC.delEdge(e);
	}
}
开发者ID:lncosie,项目名称:ogdf,代码行数:47,代码来源:FUPSSimple.cpp

示例3: getSpanTree

void FeasibleUpwardPlanarSubgraph::getSpanTree(GraphCopy &GC, List<edge> &delEdges, bool random, bool multisource)
{
	delEdges.clear();
	if (GC.numberOfNodes() == 1)
		return; // nothing to do
	node s;
	hasSingleSource(GC, s);
	NodeArray<bool> visited(GC, false);
	EdgeArray<bool> isTreeEdge(GC,false);
	List<node> toDo;

	// the original graph is a multisource graph. The sources are connected with the super source s.
	// so do not delete the incident edges of s
	if (multisource){
		// put all incident edges of the source to treeEdges
		for(adjEntry adj : s->adjEdges) {
			isTreeEdge[adj->theEdge()] = true;
			visited[adj->theEdge()->target()];
			toDo.pushBack(adj->theEdge()->target());
		}
	}
	else
		toDo.pushBack(s);


	//traversing with dfs
	for(node start : toDo) {
		for(adjEntry adj : start->adjEdges) {
			node v = adj->theEdge()->target();
			if (!visited[v])
				dfs_visit(GC, adj->theEdge(), visited, isTreeEdge, random);
		}
	}

	// delete all non tree edgesEdges to obtain a span tree
	List<edge> l;
	for(edge e : GC.edges) {
		if (!isTreeEdge[e])
			l.pushBack(e);
	}
	while (!l.empty()) {
		edge e = l.popFrontRet();
		delEdges.pushBack(GC.original(e));
		GC.delEdge(e);
	}
}
开发者ID:lncosie,项目名称:ogdf,代码行数:46,代码来源:FeasibleUpwardPlanarSubgraph.cpp

示例4: callAndDelete

Module::ReturnType PlanarSubgraphModule::callAndDelete(
	GraphCopy &PG,
	const List<edge> &preferedEdges,
	List<edge> &delOrigEdges,
	bool preferedImplyPlanar)
{
	List<edge> delEdges;

	ReturnType retValue = call(PG, preferedEdges, delEdges, preferedImplyPlanar);

	if(isSolution(retValue))
	{
		ListConstIterator<edge> it;
		for(it = delEdges.begin(); it.valid(); ++it) {
			edge eCopy = *it;

			delOrigEdges.pushBack(PG.original(eCopy));
			PG.delEdge(eCopy);
		}
	}

	return retValue;
}
开发者ID:Alihina,项目名称:ogdf,代码行数:23,代码来源:PlanarSubgraphModule.cpp

示例5: call

void UpwardPlanarSubgraphSimple::call(GraphCopy &GC, List<edge> &delEdges)
{
	const Graph &G = GC.original();
	delEdges.clear();

	// We construct an auxiliary graph H which represents the current upward
	// planar subgraph.
	Graph H;
	NodeArray<node> mapToH(G,nullptr);
	NodeArray<node> mapToG(H,nullptr);

	for(node v : G.nodes)
		mapToG[ mapToH[v] = H.newNode() ] = v;


	// We currently support only single-source acyclic digraphs ...
	node s;
	hasSingleSource(G,s);

	OGDF_ASSERT(s != 0);
	OGDF_ASSERT(isAcyclic(G));

	// We start with a spanning tree of G rooted at the single source.
	NodeArray<bool> visitedNode(G,false);
	SListPure<edge> treeEdges;
	dfsBuildSpanningTree(s,treeEdges,visitedNode);


	// Mark all edges in the spanning tree so they can be skipped in the
	// loop below and add (copies of) them to H.
	EdgeArray<bool> visitedEdge(G,false);
	SListConstIterator<edge> it;
	for(it = treeEdges.begin(); it.valid(); ++it) {
		edge eG = *it;
		visitedEdge[eG] = true;
		H.newEdge(mapToH[eG->source()],mapToH[eG->target()]);
	}


	// Add subsequently the remaining edges to H and test if the resulting
	// graph is still upward planar. If not, remove the edge again from H
	// and add it to delEdges.

	SList<Tuple2<node,node> > augmented;
	GraphCopySimple graphAcyclicTest(G);

	for(edge eG : G.edges)
	{
		// already treated ?
		if(visitedEdge[eG] == true)
			continue;

		// insert edge into H
		edge eH = H.newEdge(mapToH[eG->source()],mapToH[eG->target()]);

		node superSink;
		SList<edge> augmentedEdges;
		if (UpwardPlanarity::upwardPlanarAugment_singleSource(H,superSink,augmentedEdges) == false) {
			// if H is no longer upward planar, remove eG from subgraph
			H.delEdge(eH);
			delEdges.pushBack(eG);

		} else {
			// add augmented edges as node-pair to tmpAugmented and remove
			// all augmented edges from H again
			SList<Tuple2<node,node> > tmpAugmented;
			SListConstIterator<edge> it;
			for(it = augmentedEdges.begin(); it.valid(); ++it) {
				node v = mapToG[(*it)->source()];
				node w = mapToG[(*it)->target()];

				if (v && w)
					tmpAugmented.pushBack(Tuple2<node,node>(v,w));

				H.delEdge(*it);
			}

			if (mapToG[superSink] == nullptr)
				H.delNode(superSink);

			//****************************************************************
			// The following is a simple workaround to assure the following
			// property of the upward planar subgraph:
			//   The st-augmented upward planar subgraph plus the edges not
			//   in the subgraph must be acyclic. (This is a special property
			//   of the embedding, not the augmentation.)
			// The upward-planar embedding function gives us ANY upward-planar
			// embedding. We check if the property above holds with this
			// embedding. If it doesn't, we have actually no idea if another
			// embedding would do.
			// The better solution would be to incorporate the acyclicity
			// property into the upward-planarity test, but this is compicated.
			//****************************************************************

			// test if original graph plus augmented edges is still acyclic
			if(checkAcyclic(graphAcyclicTest,tmpAugmented) == true) {
				augmented = tmpAugmented;

			} else {
				// if not, remove eG from subgraph
//.........这里部分代码省略.........
开发者ID:marvin2k,项目名称:ogdf,代码行数:101,代码来源:UpwardPlanarSubgraphSimple.cpp

示例6: realizer

/*
 * Construct the realiszer and the Tree T
 * rValues = realizer value
 * T = Tree
 */
void SchnyderLayout::realizer(
	GraphCopy& G,
	const List<node>& L,
	node a,
	node b,
	node c,
	EdgeArray<int>& rValues,
	GraphCopy& T)
{
	int  i = 0;
	edge e;
	NodeArray<int> ord(G, 0);

	// ordering: b,c,L,a
	ord[b] = i++;
	ord[c] = i++;

	for(node v : L) {
		ord[v] = i++;				// enumerate V(G)
	}
	ord[a] = i++;

	// remove all edges (they will be re-added later with different orientation)
	while (T.numberOfEdges() > 0) {
		e = T.firstEdge();
		T.delEdge(e);
	}

	for(node v : L) {
		node u = T.copy(G.original(v));   // u is copy of v in T

		adjEntry adj = nullptr;
		for(adjEntry adjRun : v->adjEdges) {
			if (ord[adjRun->twinNode()] > ord[v]) {
				adj = adjRun;
				break;
			}
		}

		adjEntry adj1 = adj;
		while (ord[adj1->twinNode()] > ord[v]) {
			adj1 = adj1->cyclicSucc();
		}
		e = T.newEdge(T.copy(G.original(adj1->twinNode())), u);
		rValues[e] = 2;

		adjEntry adj2 = adj;
		while (ord[adj2->twinNode()] > ord[v]) {
			adj2 = adj2->cyclicPred();
		}
		e = T.newEdge(T.copy(G.original(adj2->twinNode())), u);
		rValues[e] = 3;

		for (adj = adj1->cyclicSucc(); adj != adj2; adj = adj->cyclicSucc()) {
			e =  T.newEdge(u, T.copy(G.original(adj->twinNode())));
			rValues[e] = 1;
		}
	}

	// special treatement of a,b,c
	node a_in_T = T.copy(G.original(a));
	node b_in_T = T.copy(G.original(b));
	node c_in_T = T.copy(G.original(c));

	// all edges to node a get realizer value 1
	for(adjEntry adj : a->adjEdges) {
		e = T.newEdge(a_in_T, T.copy(G.original(adj->twinNode())));
		rValues[e] = 1;
	}

	// rest of outer triangle (reciprocal linked, realizer values 2 and 3)
	e = T.newEdge(b_in_T, a_in_T);
	rValues[e] = 2;
	e = T.newEdge(b_in_T, c_in_T);
	rValues[e] = 2;

	e = T.newEdge(c_in_T, a_in_T);
	rValues[e] = 3;
	e = T.newEdge(c_in_T, b_in_T);
	rValues[e] = 3;
}
开发者ID:lncosie,项目名称:ogdf,代码行数:86,代码来源:SchnyderLayout.cpp


注:本文中的GraphCopy::delEdge方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。