当前位置: 首页>>代码示例>>C++>>正文


C++ GraphCopy::copy方法代码示例

本文整理汇总了C++中GraphCopy::copy方法的典型用法代码示例。如果您正苦于以下问题:C++ GraphCopy::copy方法的具体用法?C++ GraphCopy::copy怎么用?C++ GraphCopy::copy使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GraphCopy的用法示例。


在下文中一共展示了GraphCopy::copy方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: constructMergeGraph

bool FeasibleUpwardPlanarSubgraph::constructMergeGraph(
	GraphCopy &M,
	adjEntry adj_orig,
	const List<edge> &orig_edges)
{
	CombinatorialEmbedding Beta(M);

	//set ext. face of Beta
	adjEntry ext_adj = M.copy(adj_orig->theEdge())->adjSource();
	Beta.setExternalFace(Beta.rightFace(ext_adj));

	FaceSinkGraph fsg(Beta, M.copy(adj_orig->theNode()));
	SList<node> aug_nodes;
	SList<edge> aug_edges;
	SList<face> fList;
	fsg.possibleExternalFaces(fList); // use this method to call the methode checkForest()
	node v_ext = fsg.faceNodeOf(Beta.externalFace());

	OGDF_ASSERT(v_ext != 0);

	fsg.stAugmentation(v_ext, M, aug_nodes, aug_edges);

	//add the deleted edges
	for(edge eOrig: orig_edges) {
		node a = M.copy(eOrig->source());
		node b = M.copy(eOrig->target());
		M.newEdge(a, b);
	}
	return (isAcyclic(M));
}
开发者ID:lncosie,项目名称:ogdf,代码行数:30,代码来源:FeasibleUpwardPlanarSubgraph.cpp

示例2: call

Module::ReturnType FeasibleUpwardPlanarSubgraph::call(
	const Graph &G,
	GraphCopy &FUPS,
	adjEntry &extFaceHandle,
	List<edge> &delEdges,
	bool multisources)
{
	FUPS = GraphCopy(G);
	delEdges.clear();
	node s_orig;
	hasSingleSource(G, s_orig);
	List<edge> nonTreeEdges_orig;
	getSpanTree(FUPS, nonTreeEdges_orig, true, multisources);
	CombinatorialEmbedding Gamma(FUPS);
	nonTreeEdges_orig.permute(); // random order

	//insert nonTreeEdges
	while (!nonTreeEdges_orig.empty()) {
		// make identical copy GC of Fups
		//and insert e_orig in GC
		GraphCopy GC = FUPS;
		edge e_orig = nonTreeEdges_orig.popFrontRet();
		//node a = GC.copy(e_orig->source());
		//node b = GC.copy(e_orig->target());
		GC.newEdge(e_orig);

		if (UpwardPlanarity::upwardPlanarEmbed_singleSource(GC)) { //upward embedded the fups and check feasibility
			CombinatorialEmbedding Beta(GC);

			//choose a arbitrary feasibel ext. face
			FaceSinkGraph fsg(Beta, GC.copy(s_orig));
			SList<face> ext_faces;
			fsg.possibleExternalFaces(ext_faces);
			OGDF_ASSERT(!ext_faces.empty());
			Beta.setExternalFace(ext_faces.front());

			GraphCopy M = GC; // use a identical copy of GC to constrcut the merge graph of GC
			adjEntry extFaceHandle_cur = getAdjEntry(Beta, GC.copy(s_orig), Beta.externalFace());
			adjEntry adj_orig = GC.original(extFaceHandle_cur->theEdge())->adjSource();

			if (constructMergeGraph(M, adj_orig, nonTreeEdges_orig)) {
				FUPS = GC;
				extFaceHandle = FUPS.copy(GC.original(extFaceHandle_cur->theEdge()))->adjSource();
				continue;
			}
			else {
				//Beta is not feasible
				delEdges.pushBack(e_orig);
			}
		}
		else {
			// not ok, GC is not feasible
			delEdges.pushBack(e_orig);
		}
	}

	return Module::retFeasible;
}
开发者ID:lncosie,项目名称:ogdf,代码行数:58,代码来源:FeasibleUpwardPlanarSubgraph.cpp

示例3: clusterConnection

//todo: is called only once, but could be sped up the same way as the co-conn check
void MaxCPlanarMaster::clusterConnection(cluster c, GraphCopy &gc, double &upperBoundC) {
	// For better performance, a node array is used to indicate which nodes are contained
	// in the currently considered cluster.
	NodeArray<bool> vInC(gc,false);
	// First check, if the current cluster \a c is a leaf cluster.
	// If so, compute the number of edges that have at least to be added
	// to make the cluster induced graph connected.
	if (c->cCount()==0) { 	//cluster \a c is a leaf cluster
		GraphCopy *inducedC = new GraphCopy((const Graph&)gc);
		List<node> clusterNodes;
		c->getClusterNodes(clusterNodes); // \a clusterNodes now contains all (original) nodes of cluster \a c.
		for (node w : clusterNodes) {
			vInC[gc.copy(w)] = true;
		}

		// Delete all nodes from \a inducedC that do not belong to the cluster,
		// in order to obtain the cluster induced graph.
		node v = inducedC->firstNode();
		while (v!=nullptr)  {
			node w = v->succ();
			if (!vInC[inducedC->original(v)]) inducedC->delNode(v);
			v = w;
		}

		// Determine number of connected components of cluster induced graph.
		//Todo: check could be skipped
		if (!isConnected(*inducedC)) {

			NodeArray<int> conC(*inducedC);
			int nCC = connectedComponents(*inducedC,conC);
			//at least #connected components - 1 edges have to be added.
			upperBoundC -= (nCC-1)*m_largestConnectionCoeff;
		}
		delete inducedC;
	// Cluster \a c is an "inner" cluster. Process all child clusters first.
	} else {	//c->cCount is != 0, process all child clusters first

		for (cluster ci : c->children) {
			clusterConnection(ci, gc, upperBoundC);
		}

		// Create cluster induced graph.
		GraphCopy *inducedC = new GraphCopy((const Graph&)gc);
		List<node> clusterNodes;
		c->getClusterNodes(clusterNodes); //\a clusterNodes now contains all (original) nodes of cluster \a c.
		for (node w : clusterNodes) {
			vInC[gc.copy(w)] = true;
		}
		node v = inducedC->firstNode();
		while (v!=nullptr)  {
			node w = v->succ();
			if (!vInC[inducedC->original(v)]) inducedC->delNode(v);
			v = w;
		}

		// Now collapse each child cluster to one node and determine #connected components of \a inducedC.
		List<node> oChildClusterNodes;
		List<node> cChildClusterNodes;
		for (cluster ci : c->children) {
			ci->getClusterNodes(oChildClusterNodes);
			// Compute corresponding nodes of graph \a inducedC.
			for (node u : oChildClusterNodes) {
				node copy = inducedC->copy(gc.copy(u));
				cChildClusterNodes.pushBack(copy);
			}
			inducedC->collapse(cChildClusterNodes);
			oChildClusterNodes.clear();
			cChildClusterNodes.clear();
		}
		// Now, check \a inducedC for connectivity.
		if (!isConnected(*inducedC)) {

			NodeArray<int> conC(*inducedC);
			int nCC = connectedComponents(*inducedC,conC);
			//at least #connected components - 1 edges have to added.
			upperBoundC -= (nCC-1)*m_largestConnectionCoeff;
		}
		delete inducedC;
	}
}//clusterConnection
开发者ID:lncosie,项目名称:ogdf,代码行数:81,代码来源:MaxCPlanar_Master.cpp

示例4: call


//.........这里部分代码省略.........

	SList<Tuple2<node,node> > augmented;
	GraphCopySimple graphAcyclicTest(G);

	for(edge eG : G.edges)
	{
		// already treated ?
		if(visitedEdge[eG] == true)
			continue;

		// insert edge into H
		edge eH = H.newEdge(mapToH[eG->source()],mapToH[eG->target()]);

		node superSink;
		SList<edge> augmentedEdges;
		if (UpwardPlanarity::upwardPlanarAugment_singleSource(H,superSink,augmentedEdges) == false) {
			// if H is no longer upward planar, remove eG from subgraph
			H.delEdge(eH);
			delEdges.pushBack(eG);

		} else {
			// add augmented edges as node-pair to tmpAugmented and remove
			// all augmented edges from H again
			SList<Tuple2<node,node> > tmpAugmented;
			SListConstIterator<edge> it;
			for(it = augmentedEdges.begin(); it.valid(); ++it) {
				node v = mapToG[(*it)->source()];
				node w = mapToG[(*it)->target()];

				if (v && w)
					tmpAugmented.pushBack(Tuple2<node,node>(v,w));

				H.delEdge(*it);
			}

			if (mapToG[superSink] == nullptr)
				H.delNode(superSink);

			//****************************************************************
			// The following is a simple workaround to assure the following
			// property of the upward planar subgraph:
			//   The st-augmented upward planar subgraph plus the edges not
			//   in the subgraph must be acyclic. (This is a special property
			//   of the embedding, not the augmentation.)
			// The upward-planar embedding function gives us ANY upward-planar
			// embedding. We check if the property above holds with this
			// embedding. If it doesn't, we have actually no idea if another
			// embedding would do.
			// The better solution would be to incorporate the acyclicity
			// property into the upward-planarity test, but this is compicated.
			//****************************************************************

			// test if original graph plus augmented edges is still acyclic
			if(checkAcyclic(graphAcyclicTest,tmpAugmented) == true) {
				augmented = tmpAugmented;

			} else {
				// if not, remove eG from subgraph
				H.delEdge(eH);
				delEdges.pushBack(eG);
			}
		}

	}

	// remove edges not in the subgraph from GC
	ListConstIterator<edge> itE;
	for(itE = delEdges.begin(); itE.valid(); ++itE)
		GC.delEdge(GC.copy(*itE));

	// add augmented edges to GC
	SListConstIterator<Tuple2<node,node> > itP;
	for(itP = augmented.begin(); itP.valid(); ++itP) {
		node v = (*itP).x1();
		node w = (*itP).x2();

		GC.newEdge(GC.copy(v),GC.copy(w));
	}

	// add super sink to GC
	node sGC = nullptr;
	SList<node> sinks;
	for(node v : GC.nodes) {
		if(v->indeg() == 0)
			sGC = v;
		if(v->outdeg() == 0)
			sinks.pushBack(v);
	}

	node superSinkGC = GC.newNode();
	SListConstIterator<node> itV;
	for(itV = sinks.begin(); itV.valid(); ++itV)
		GC.newEdge(*itV,superSinkGC);

	// add st-edge to GC, so that we now have a planar st-digraph
	GC.newEdge(sGC,superSinkGC);

	OGDF_ASSERT(isAcyclic(GC));
	OGDF_ASSERT(isPlanar(GC));
}
开发者ID:marvin2k,项目名称:ogdf,代码行数:101,代码来源:UpwardPlanarSubgraphSimple.cpp

示例5: constructMergeGraph

bool FUPSSimple::constructMergeGraph(GraphCopy &M, adjEntry adj_orig, const List<edge> &orig_edges)
{
	CombinatorialEmbedding Beta(M);

	//set ext. face of Beta
	adjEntry ext_adj = M.copy(adj_orig->theEdge())->adjSource();
	Beta.setExternalFace(Beta.rightFace(ext_adj));

	//*************************** debug ********************************
	/*
	cout << endl << "FUPS : " << endl;
	for(face ff : Beta.faces) {
		cout << "face " << ff->index() << ": ";
		adjEntry adjNext = ff->firstAdj();
		do {
			cout << adjNext->theEdge() << "; ";
			adjNext = adjNext->faceCycleSucc();
		} while(adjNext != ff->firstAdj());
		cout << endl;
	}
	if (Beta.externalFace() != 0)
		cout << "ext. face of the graph is: " << Beta.externalFace()->index() << endl;
	else
		cout << "no ext. face set." << endl;
	*/

	FaceSinkGraph fsg(Beta, M.copy(adj_orig->theNode()));
	SList<node> aug_nodes;
	SList<edge> aug_edges;
	SList<face> fList;
	fsg.possibleExternalFaces(fList); // use this method to call the methode checkForest()
	node v_ext = fsg.faceNodeOf(Beta.externalFace());

	OGDF_ASSERT(v_ext != 0);

	fsg.stAugmentation(v_ext, M, aug_nodes, aug_edges);

	/*
	//------------------------------------debug
	GraphAttributes AG(M, GraphAttributes::nodeGraphics|
						GraphAttributes::edgeGraphics|
						GraphAttributes::nodeColor|
						GraphAttributes::edgeColor|
						GraphAttributes::nodeLabel|
						GraphAttributes::edgeLabel
						);
	// label the nodes with their index
	for(node v : AG.constGraph().nodes) {
		AG.label(v) = to_string(v->index());
	}
	AG.writeGML("c:/temp/MergeFUPS.gml");
	*/


	OGDF_ASSERT(isStGraph(M));

	//add the deleted edges
	for(edge eOrig : orig_edges) {
		node a = M.copy(eOrig->source());
		node b = M.copy(eOrig->target());
		M.newEdge(a, b);
	}
	return (isAcyclic(M));
}
开发者ID:lncosie,项目名称:ogdf,代码行数:64,代码来源:FUPSSimple.cpp

示例6: schnyderEmbedding

void SchnyderLayout::schnyderEmbedding(
	GraphCopy& GC,
	GridLayout &gridLayout,
	adjEntry adjExternal)
{
	NodeArray<int> &xcoord = gridLayout.x();
	NodeArray<int> &ycoord = gridLayout.y();

	node v;
	List<node> L;						// (un)contraction order
	GraphCopy T = GraphCopy(GC);		// the realizer tree (reverse direction of edges!!!)
	EdgeArray<int> rValues(T);			// the realizer values

	// choose outer face a,b,c
	adjEntry adja;
	if (adjExternal != 0) {
		edge eG  = adjExternal->theEdge();
		edge eGC = GC.copy(eG);
		adja = (adjExternal == eG->adjSource()) ? eGC->adjSource() : eGC->adjTarget();
	}
	else {
		adja = GC.firstEdge()->adjSource();
	}
	adjEntry adjb = adja->faceCyclePred();
	adjEntry adjc = adjb->faceCyclePred();

	node a = adja->theNode();
	node b = adjb->theNode();
	node c = adjc->theNode();

	node a_in_T = T.copy(GC.original(a));
	node b_in_T = T.copy(GC.original(b));
	node c_in_T = T.copy(GC.original(c));

	contract(GC, a, b, c, L);

	realizer(GC, L, a, b, c, rValues, T);

	NodeArray<int>  t1(T);
	NodeArray<int>  t2(T);
	NodeArray<int>  val(T, 1);

	NodeArray<int>  P1(T);
	NodeArray<int>  P3(T);
	NodeArray<int>  v1(T);
	NodeArray<int>  v2(T);

	subtreeSizes(rValues, 1, a_in_T, t1);
	subtreeSizes(rValues, 2, b_in_T, t2);

	prefixSum(rValues, 1, a_in_T, val, P1);
	prefixSum(rValues, 3, c_in_T, val, P3);
	// now Pi  =  depth of all nodes in Tree T(i) (depth[root] = 1)

	prefixSum(rValues, 2, b_in_T, t1, v1);
	// special treatment for a
	v1[a_in_T] = t1[a_in_T];

	/*
	 * v1[v] now is the sum of the
	 * "count of nodes in t1" minus the "subtree size for node x"
	 * for every node x on a path from b to v in t2
	 */

	prefixSum(rValues, 3, c_in_T, t1, val);
	// special treatment for a
	val[a_in_T] = t1[a_in_T];

	/*
	 * val[v] now is the sum of the
	 * "count of nodes in t1" minus the "subtree size for node x"
	 * for every node x on a path from c to v in t3
	 */

	// r1[v]=v1[v]+val[v]-t1[v] is the number of nodes in region 1 from v
	forall_nodes(v, T) {
		// calc v1'
		v1[v] += val[v] - t1[v] - P3[v];
	}
开发者ID:Alihina,项目名称:ogdf,代码行数:79,代码来源:SchnyderLayout.cpp

示例7: realizer

/*
 * Construct the realiszer and the Tree T
 * rValues = realizer value
 * T = Tree
 */
void SchnyderLayout::realizer(
	GraphCopy& G,
	const List<node>& L,
	node a,
	node b,
	node c,
	EdgeArray<int>& rValues,
	GraphCopy& T)
{
	int  i = 0;
	edge e;
	NodeArray<int> ord(G, 0);

	// ordering: b,c,L,a
	ord[b] = i++;
	ord[c] = i++;

	for(node v : L) {
		ord[v] = i++;				// enumerate V(G)
	}
	ord[a] = i++;

	// remove all edges (they will be re-added later with different orientation)
	while (T.numberOfEdges() > 0) {
		e = T.firstEdge();
		T.delEdge(e);
	}

	for(node v : L) {
		node u = T.copy(G.original(v));   // u is copy of v in T

		adjEntry adj = nullptr;
		for(adjEntry adjRun : v->adjEdges) {
			if (ord[adjRun->twinNode()] > ord[v]) {
				adj = adjRun;
				break;
			}
		}

		adjEntry adj1 = adj;
		while (ord[adj1->twinNode()] > ord[v]) {
			adj1 = adj1->cyclicSucc();
		}
		e = T.newEdge(T.copy(G.original(adj1->twinNode())), u);
		rValues[e] = 2;

		adjEntry adj2 = adj;
		while (ord[adj2->twinNode()] > ord[v]) {
			adj2 = adj2->cyclicPred();
		}
		e = T.newEdge(T.copy(G.original(adj2->twinNode())), u);
		rValues[e] = 3;

		for (adj = adj1->cyclicSucc(); adj != adj2; adj = adj->cyclicSucc()) {
			e =  T.newEdge(u, T.copy(G.original(adj->twinNode())));
			rValues[e] = 1;
		}
	}

	// special treatement of a,b,c
	node a_in_T = T.copy(G.original(a));
	node b_in_T = T.copy(G.original(b));
	node c_in_T = T.copy(G.original(c));

	// all edges to node a get realizer value 1
	for(adjEntry adj : a->adjEdges) {
		e = T.newEdge(a_in_T, T.copy(G.original(adj->twinNode())));
		rValues[e] = 1;
	}

	// rest of outer triangle (reciprocal linked, realizer values 2 and 3)
	e = T.newEdge(b_in_T, a_in_T);
	rValues[e] = 2;
	e = T.newEdge(b_in_T, c_in_T);
	rValues[e] = 2;

	e = T.newEdge(c_in_T, a_in_T);
	rValues[e] = 3;
	e = T.newEdge(c_in_T, b_in_T);
	rValues[e] = 3;
}
开发者ID:lncosie,项目名称:ogdf,代码行数:86,代码来源:SchnyderLayout.cpp


注:本文中的GraphCopy::copy方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。