本文整理汇总了C++中GrGLFragmentBuilder::fragmentPosition方法的典型用法代码示例。如果您正苦于以下问题:C++ GrGLFragmentBuilder::fragmentPosition方法的具体用法?C++ GrGLFragmentBuilder::fragmentPosition怎么用?C++ GrGLFragmentBuilder::fragmentPosition使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GrGLFragmentBuilder
的用法示例。
在下文中一共展示了GrGLFragmentBuilder::fragmentPosition方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: emitCode
void GLCircleEffect::emitCode(EmitArgs& args) {
const CircleEffect& ce = args.fFp.cast<CircleEffect>();
const char *circleName;
// The circle uniform is (center.x, center.y, radius + 0.5, 1 / (radius + 0.5)) for regular
// fills and (..., radius - 0.5, 1 / (radius - 0.5)) for inverse fills.
fCircleUniform = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"circle",
&circleName);
GrGLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
const char* fragmentPos = fsBuilder->fragmentPosition();
SkASSERT(kHairlineAA_GrProcessorEdgeType != ce.getEdgeType());
// TODO: Right now the distance to circle caclulation is performed in a space normalized to the
// radius and then denormalized. This is to prevent overflow on devices that have a "real"
// mediump. It'd be nice to only to this on mediump devices but we currently don't have the
// caps here.
if (GrProcessorEdgeTypeIsInverseFill(ce.getEdgeType())) {
fsBuilder->codeAppendf("\t\tfloat d = (length((%s.xy - %s.xy) * %s.w) - 1.0) * %s.z;\n",
circleName, fragmentPos, circleName, circleName);
} else {
fsBuilder->codeAppendf("\t\tfloat d = (1.0 - length((%s.xy - %s.xy) * %s.w)) * %s.z;\n",
circleName, fragmentPos, circleName, circleName);
}
if (GrProcessorEdgeTypeIsAA(ce.getEdgeType())) {
fsBuilder->codeAppend("\t\td = clamp(d, 0.0, 1.0);\n");
} else {
fsBuilder->codeAppend("\t\td = d > 0.5 ? 1.0 : 0.0;\n");
}
fsBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("d")).c_str());
}
示例2: emitCode
void GLAARectEffect::emitCode(EmitArgs& args) {
const AARectEffect& aare = args.fFp.cast<AARectEffect>();
const char *rectName;
// The rect uniform's xyzw refer to (left + 0.5, top + 0.5, right - 0.5, bottom - 0.5),
// respectively.
fRectUniform = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType,
kDefault_GrSLPrecision,
"rect",
&rectName);
GrGLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
const char* fragmentPos = fsBuilder->fragmentPosition();
if (GrProcessorEdgeTypeIsAA(aare.getEdgeType())) {
// The amount of coverage removed in x and y by the edges is computed as a pair of negative
// numbers, xSub and ySub.
fsBuilder->codeAppend("\t\tfloat xSub, ySub;\n");
fsBuilder->codeAppendf("\t\txSub = min(%s.x - %s.x, 0.0);\n", fragmentPos, rectName);
fsBuilder->codeAppendf("\t\txSub += min(%s.z - %s.x, 0.0);\n", rectName, fragmentPos);
fsBuilder->codeAppendf("\t\tySub = min(%s.y - %s.y, 0.0);\n", fragmentPos, rectName);
fsBuilder->codeAppendf("\t\tySub += min(%s.w - %s.y, 0.0);\n", rectName, fragmentPos);
// Now compute coverage in x and y and multiply them to get the fraction of the pixel
// covered.
fsBuilder->codeAppendf("\t\tfloat alpha = (1.0 + max(xSub, -1.0)) * (1.0 + max(ySub, -1.0));\n");
} else {
fsBuilder->codeAppendf("\t\tfloat alpha = 1.0;\n");
fsBuilder->codeAppendf("\t\talpha *= (%s.x - %s.x) > -0.5 ? 1.0 : 0.0;\n", fragmentPos, rectName);
fsBuilder->codeAppendf("\t\talpha *= (%s.z - %s.x) > -0.5 ? 1.0 : 0.0;\n", rectName, fragmentPos);
fsBuilder->codeAppendf("\t\talpha *= (%s.y - %s.y) > -0.5 ? 1.0 : 0.0;\n", fragmentPos, rectName);
fsBuilder->codeAppendf("\t\talpha *= (%s.w - %s.y) > -0.5 ? 1.0 : 0.0;\n", rectName, fragmentPos);
}
if (GrProcessorEdgeTypeIsInverseFill(aare.getEdgeType())) {
fsBuilder->codeAppend("\t\talpha = 1.0 - alpha;\n");
}
fsBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str());
}
示例3: emitCode
void GLEllipticalRRectEffect::emitCode(GrGLFPBuilder* builder,
const GrFragmentProcessor& effect,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray&,
const TextureSamplerArray& samplers) {
const EllipticalRRectEffect& erre = effect.cast<EllipticalRRectEffect>();
const char *rectName;
// The inner rect is the rrect bounds inset by the x/y radii
fInnerRectUniform = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"innerRect",
&rectName);
GrGLFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder();
const char* fragmentPos = fsBuilder->fragmentPosition();
// At each quarter-ellipse corner we compute a vector that is the offset of the fragment pos
// to the ellipse center. The vector is pinned in x and y to be in the quarter-plane relevant
// to that corner. This means that points near the interior near the rrect top edge will have
// a vector that points straight up for both the TL left and TR corners. Computing an
// alpha from this vector at either the TR or TL corner will give the correct result. Similarly,
// fragments near the other three edges will get the correct AA. Fragments in the interior of
// the rrect will have a (0,0) vector at all four corners. So long as the radii > 0.5 they will
// correctly produce an alpha value of 1 at all four corners. We take the min of all the alphas.
// The code below is a simplified version of the above that performs maxs on the vector
// components before computing distances and alpha values so that only one distance computation
// need be computed to determine the min alpha.
fsBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos);
fsBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName);
switch (erre.getRRect().getType()) {
case SkRRect::kSimple_Type: {
const char *invRadiiXYSqdName;
fInvRadiiSqdUniform = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"invRadiiXY",
&invRadiiXYSqdName);
fsBuilder->codeAppend("\t\tvec2 dxy = max(max(dxy0, dxy1), 0.0);\n");
// Z is the x/y offsets divided by squared radii.
fsBuilder->codeAppendf("\t\tvec2 Z = dxy * %s;\n", invRadiiXYSqdName);
break;
}
case SkRRect::kNinePatch_Type: {
const char *invRadiiLTRBSqdName;
fInvRadiiSqdUniform = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"invRadiiLTRB",
&invRadiiLTRBSqdName);
fsBuilder->codeAppend("\t\tvec2 dxy = max(max(dxy0, dxy1), 0.0);\n");
// Z is the x/y offsets divided by squared radii. We only care about the (at most) one
// corner where both the x and y offsets are positive, hence the maxes. (The inverse
// squared radii will always be positive.)
fsBuilder->codeAppendf("\t\tvec2 Z = max(max(dxy0 * %s.xy, dxy1 * %s.zw), 0.0);\n",
invRadiiLTRBSqdName, invRadiiLTRBSqdName);
break;
}
default:
SkFAIL("RRect should always be simple or nine-patch.");
}
// implicit is the evaluation of (x/a)^2 + (y/b)^2 - 1.
fsBuilder->codeAppend("\t\tfloat implicit = dot(Z, dxy) - 1.0;\n");
// grad_dot is the squared length of the gradient of the implicit.
fsBuilder->codeAppendf("\t\tfloat grad_dot = 4.0 * dot(Z, Z);\n");
// avoid calling inversesqrt on zero.
fsBuilder->codeAppend("\t\tgrad_dot = max(grad_dot, 1.0e-4);\n");
fsBuilder->codeAppendf("\t\tfloat approx_dist = implicit * inversesqrt(grad_dot);\n");
if (kFillAA_GrProcessorEdgeType == erre.getEdgeType()) {
fsBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 - approx_dist, 0.0, 1.0);\n");
} else {
fsBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 + approx_dist, 0.0, 1.0);\n");
}
fsBuilder->codeAppendf("\t\t%s = %s;\n", outputColor,
(GrGLSLExpr4(inputColor) * GrGLSLExpr1("alpha")).c_str());
}