本文整理汇总了C++中GrGLFragmentBuilder::appendTextureLookup方法的典型用法代码示例。如果您正苦于以下问题:C++ GrGLFragmentBuilder::appendTextureLookup方法的具体用法?C++ GrGLFragmentBuilder::appendTextureLookup怎么用?C++ GrGLFragmentBuilder::appendTextureLookup使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GrGLFragmentBuilder
的用法示例。
在下文中一共展示了GrGLFragmentBuilder::appendTextureLookup方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: max
void GrColorCubeEffect::GLProcessor::emitCode(GrGLFPBuilder* builder,
const GrFragmentProcessor&,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray& coords,
const TextureSamplerArray& samplers) {
if (NULL == inputColor) {
inputColor = "vec4(1)";
}
fColorCubeSizeUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kFloat_GrSLType, kDefault_GrSLPrecision,
"Size");
const char* colorCubeSizeUni = builder->getUniformCStr(fColorCubeSizeUni);
fColorCubeInvSizeUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kFloat_GrSLType, kDefault_GrSLPrecision,
"InvSize");
const char* colorCubeInvSizeUni = builder->getUniformCStr(fColorCubeInvSizeUni);
const char* nonZeroAlpha = "nonZeroAlpha";
const char* unPMColor = "unPMColor";
const char* cubeIdx = "cubeIdx";
const char* cCoords1 = "cCoords1";
const char* cCoords2 = "cCoords2";
// Note: if implemented using texture3D in OpenGL ES older than OpenGL ES 3.0,
// the shader might need "#extension GL_OES_texture_3D : enable".
GrGLFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder();
// Unpremultiply color
fsBuilder->codeAppendf("\tfloat %s = max(%s.a, 0.00001);\n", nonZeroAlpha, inputColor);
fsBuilder->codeAppendf("\tvec4 %s = vec4(%s.rgb / %s, %s);\n",
unPMColor, inputColor, nonZeroAlpha, nonZeroAlpha);
// Fit input color into the cube.
fsBuilder->codeAppendf(
"vec3 %s = vec3(%s.rg * vec2((%s - 1.0) * %s) + vec2(0.5 * %s), %s.b * (%s - 1.0));\n",
cubeIdx, unPMColor, colorCubeSizeUni, colorCubeInvSizeUni, colorCubeInvSizeUni,
unPMColor, colorCubeSizeUni);
// Compute y coord for for texture fetches.
fsBuilder->codeAppendf("vec2 %s = vec2(%s.r, (floor(%s.b) + %s.g) * %s);\n",
cCoords1, cubeIdx, cubeIdx, cubeIdx, colorCubeInvSizeUni);
fsBuilder->codeAppendf("vec2 %s = vec2(%s.r, (ceil(%s.b) + %s.g) * %s);\n",
cCoords2, cubeIdx, cubeIdx, cubeIdx, colorCubeInvSizeUni);
// Apply the cube.
fsBuilder->codeAppendf("%s = vec4(mix(", outputColor);
fsBuilder->appendTextureLookup(samplers[0], cCoords1);
fsBuilder->codeAppend(".rgb, ");
fsBuilder->appendTextureLookup(samplers[0], cCoords2);
// Premultiply color by alpha. Note that the input alpha is not modified by this shader.
fsBuilder->codeAppendf(".rgb, fract(%s.b)) * vec3(%s), %s.a);\n",
cubeIdx, nonZeroAlpha, inputColor);
}
示例2: emitCode
virtual void emitCode(GrGLFPBuilder* builder,
const GrFragmentProcessor&,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray& coords,
const TextureSamplerArray& samplers) override {
// Using highp for GLES here in order to avoid some precision issues on specific GPUs.
GrGLShaderVar tmpVar("tmpColor", kVec4f_GrSLType, 0, kHigh_GrSLPrecision);
SkString tmpDecl;
tmpVar.appendDecl(builder->ctxInfo(), &tmpDecl);
GrGLFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder();
fsBuilder->codeAppendf("%s;", tmpDecl.c_str());
fsBuilder->codeAppendf("%s = ", tmpVar.c_str());
fsBuilder->appendTextureLookup(samplers[0], coords[0].c_str(), coords[0].getType());
fsBuilder->codeAppend(";");
if (GrConfigConversionEffect::kNone_PMConversion == fPMConversion) {
SkASSERT(fSwapRedAndBlue);
fsBuilder->codeAppendf("%s = %s.bgra;", outputColor, tmpVar.c_str());
} else {
const char* swiz = fSwapRedAndBlue ? "bgr" : "rgb";
switch (fPMConversion) {
case GrConfigConversionEffect::kMulByAlpha_RoundUp_PMConversion:
fsBuilder->codeAppendf(
"%s = vec4(ceil(%s.%s * %s.a * 255.0) / 255.0, %s.a);",
tmpVar.c_str(), tmpVar.c_str(), swiz, tmpVar.c_str(), tmpVar.c_str());
break;
case GrConfigConversionEffect::kMulByAlpha_RoundDown_PMConversion:
// Add a compensation(0.001) here to avoid the side effect of the floor operation.
// In Intel GPUs, the integer value converted from floor(%s.r * 255.0) / 255.0
// is less than the integer value converted from %s.r by 1 when the %s.r is
// converted from the integer value 2^n, such as 1, 2, 4, 8, etc.
fsBuilder->codeAppendf(
"%s = vec4(floor(%s.%s * %s.a * 255.0 + 0.001) / 255.0, %s.a);",
tmpVar.c_str(), tmpVar.c_str(), swiz, tmpVar.c_str(), tmpVar.c_str());
break;
case GrConfigConversionEffect::kDivByAlpha_RoundUp_PMConversion:
fsBuilder->codeAppendf(
"%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(ceil(%s.%s / %s.a * 255.0) / 255.0, %s.a);",
tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), swiz, tmpVar.c_str(), tmpVar.c_str());
break;
case GrConfigConversionEffect::kDivByAlpha_RoundDown_PMConversion:
fsBuilder->codeAppendf(
"%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(floor(%s.%s / %s.a * 255.0) / 255.0, %s.a);",
tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), swiz, tmpVar.c_str(), tmpVar.c_str());
break;
default:
SkFAIL("Unknown conversion op.");
break;
}
fsBuilder->codeAppendf("%s = %s;", outputColor, tmpVar.c_str());
}
SkString modulate;
GrGLSLMulVarBy4f(&modulate, outputColor, inputColor);
fsBuilder->codeAppend(modulate.c_str());
}
示例3: emitCode
void GrGLMagnifierEffect::emitCode(GrGLFPBuilder* builder,
const GrFragmentProcessor&,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray& coords,
const TextureSamplerArray& samplers) {
fOffsetVar = builder->addUniform(
GrGLProgramBuilder::kFragment_Visibility |
GrGLProgramBuilder::kVertex_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision, "Offset");
fInvZoomVar = builder->addUniform(
GrGLProgramBuilder::kFragment_Visibility |
GrGLProgramBuilder::kVertex_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision, "InvZoom");
fInvInsetVar = builder->addUniform(
GrGLProgramBuilder::kFragment_Visibility |
GrGLProgramBuilder::kVertex_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision, "InvInset");
fBoundsVar = builder->addUniform(
GrGLProgramBuilder::kFragment_Visibility |
GrGLProgramBuilder::kVertex_Visibility,
kVec4f_GrSLType, kDefault_GrSLPrecision, "Bounds");
GrGLFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder();
SkString coords2D = fsBuilder->ensureFSCoords2D(coords, 0);
fsBuilder->codeAppendf("\t\tvec2 coord = %s;\n", coords2D.c_str());
fsBuilder->codeAppendf("\t\tvec2 zoom_coord = %s + %s * %s;\n",
builder->getUniformCStr(fOffsetVar),
coords2D.c_str(),
builder->getUniformCStr(fInvZoomVar));
const char* bounds = builder->getUniformCStr(fBoundsVar);
fsBuilder->codeAppendf("\t\tvec2 delta = (coord - %s.xy) * %s.zw;\n", bounds, bounds);
fsBuilder->codeAppendf("\t\tdelta = min(delta, vec2(1.0, 1.0) - delta);\n");
fsBuilder->codeAppendf("\t\tdelta = delta * %s;\n", builder->getUniformCStr(fInvInsetVar));
fsBuilder->codeAppend("\t\tfloat weight = 0.0;\n");
fsBuilder->codeAppend("\t\tif (delta.s < 2.0 && delta.t < 2.0) {\n");
fsBuilder->codeAppend("\t\t\tdelta = vec2(2.0, 2.0) - delta;\n");
fsBuilder->codeAppend("\t\t\tfloat dist = length(delta);\n");
fsBuilder->codeAppend("\t\t\tdist = max(2.0 - dist, 0.0);\n");
fsBuilder->codeAppend("\t\t\tweight = min(dist * dist, 1.0);\n");
fsBuilder->codeAppend("\t\t} else {\n");
fsBuilder->codeAppend("\t\t\tvec2 delta_squared = delta * delta;\n");
fsBuilder->codeAppend("\t\t\tweight = min(min(delta_squared.x, delta_squared.y), 1.0);\n");
fsBuilder->codeAppend("\t\t}\n");
fsBuilder->codeAppend("\t\tvec2 mix_coord = mix(coord, zoom_coord, weight);\n");
fsBuilder->codeAppend("\t\tvec4 output_color = ");
fsBuilder->appendTextureLookup(samplers[0], "mix_coord");
fsBuilder->codeAppend(";\n");
fsBuilder->codeAppendf("\t\t%s = output_color;", outputColor);
SkString modulate;
GrGLSLMulVarBy4f(&modulate, outputColor, inputColor);
fsBuilder->codeAppend(modulate.c_str());
}
示例4: onEmitCode
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{
const GrBitmapTextGeoProc& cte = args.fGP.cast<GrBitmapTextGeoProc>();
GrGLGPBuilder* pb = args.fPB;
GrGLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder();
// emit attributes
vsBuilder->emitAttributes(cte);
GrGLVertToFrag v(kVec2f_GrSLType);
pb->addVarying("TextureCoords", &v);
// this is only used with text, so our texture bounds always match the glyph atlas
if (cte.maskFormat() == kA8_GrMaskFormat) {
vsBuilder->codeAppendf("%s = vec2(" GR_FONT_ATLAS_A8_RECIP_WIDTH ", "
GR_FONT_ATLAS_RECIP_HEIGHT ")*%s;", v.vsOut(),
cte.inTextureCoords()->fName);
} else {
vsBuilder->codeAppendf("%s = vec2(" GR_FONT_ATLAS_RECIP_WIDTH ", "
GR_FONT_ATLAS_RECIP_HEIGHT ")*%s;", v.vsOut(),
cte.inTextureCoords()->fName);
}
// Setup pass through color
if (!cte.colorIgnored()) {
if (cte.hasVertexColor()) {
pb->addPassThroughAttribute(cte.inColor(), args.fOutputColor);
} else {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
}
}
// Setup position
this->setupPosition(pb, gpArgs, cte.inPosition()->fName);
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, cte.inPosition()->fName,
cte.localMatrix(), args.fTransformsIn, args.fTransformsOut);
GrGLFragmentBuilder* fsBuilder = pb->getFragmentShaderBuilder();
if (cte.maskFormat() == kARGB_GrMaskFormat) {
fsBuilder->codeAppendf("%s = ", args.fOutputColor);
fsBuilder->appendTextureLookupAndModulate(args.fOutputColor,
args.fSamplers[0],
v.fsIn(),
kVec2f_GrSLType);
fsBuilder->codeAppend(";");
fsBuilder->codeAppendf("%s = vec4(1);", args.fOutputCoverage);
} else {
fsBuilder->codeAppendf("%s = ", args.fOutputCoverage);
fsBuilder->appendTextureLookup(args.fSamplers[0], v.fsIn(), kVec2f_GrSLType);
fsBuilder->codeAppend(";");
}
}
示例5: emitCode
void GrGLConvolutionEffect::emitCode(GrGLFPBuilder* builder,
const GrFragmentProcessor&,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray& coords,
const TextureSamplerArray& samplers) {
fImageIncrementUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"ImageIncrement");
if (this->useBounds()) {
fBoundsUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"Bounds");
}
fKernelUni = builder->addUniformArray(GrGLProgramBuilder::kFragment_Visibility,
kFloat_GrSLType, kDefault_GrSLPrecision,
"Kernel", this->width());
GrGLFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder();
SkString coords2D = fsBuilder->ensureFSCoords2D(coords, 0);
fsBuilder->codeAppendf("\t\t%s = vec4(0, 0, 0, 0);\n", outputColor);
int width = this->width();
const GrGLShaderVar& kernel = builder->getUniformVariable(fKernelUni);
const char* imgInc = builder->getUniformCStr(fImageIncrementUni);
fsBuilder->codeAppendf("\t\tvec2 coord = %s - %d.0 * %s;\n", coords2D.c_str(), fRadius, imgInc);
// Manually unroll loop because some drivers don't; yields 20-30% speedup.
for (int i = 0; i < width; i++) {
SkString index;
SkString kernelIndex;
index.appendS32(i);
kernel.appendArrayAccess(index.c_str(), &kernelIndex);
fsBuilder->codeAppendf("\t\t%s += ", outputColor);
fsBuilder->appendTextureLookup(samplers[0], "coord");
if (this->useBounds()) {
const char* bounds = builder->getUniformCStr(fBoundsUni);
const char* component = this->direction() == Gr1DKernelEffect::kY_Direction ? "y" : "x";
fsBuilder->codeAppendf(" * float(coord.%s >= %s.x && coord.%s <= %s.y)",
component, bounds, component, bounds);
}
fsBuilder->codeAppendf(" * %s;\n", kernelIndex.c_str());
fsBuilder->codeAppendf("\t\tcoord += %s;\n", imgInc);
}
SkString modulate;
GrGLSLMulVarBy4f(&modulate, outputColor, inputColor);
fsBuilder->codeAppend(modulate.c_str());
}
示例6: emitCode
void emitCode(EmitArgs& args) override {
GrGLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
fsBuilder->codeAppend("vec4 bgColor = ");
fsBuilder->appendTextureLookup(args.fSamplers[0], args.fCoords[0].c_str(),
args.fCoords[0].getType());
fsBuilder->codeAppendf(";");
const char* dstColor = "bgColor";
fKUni = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"k");
const char* kUni = args.fBuilder->getUniformCStr(fKUni);
add_arithmetic_code(fsBuilder, args.fInputColor, dstColor, args.fOutputColor, kUni,
fEnforcePMColor);
}
示例7: emitCode
void emitCode(GrGLFPBuilder* builder,
const GrFragmentProcessor& fp,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray& coords,
const TextureSamplerArray& samplers) override {
GrGLFragmentBuilder* fpb = builder->getFragmentShaderBuilder();
// add uniforms
const char* lightDirUniName = NULL;
fLightDirUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec3f_GrSLType, kDefault_GrSLPrecision,
"LightDir", &lightDirUniName);
const char* lightColorUniName = NULL;
fLightColorUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"LightColor", &lightColorUniName);
const char* ambientColorUniName = NULL;
fAmbientColorUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"AmbientColor", &ambientColorUniName);
fpb->codeAppend("vec4 diffuseColor = ");
fpb->appendTextureLookupAndModulate(inputColor, samplers[0],
coords[0].c_str(), coords[0].getType());
fpb->codeAppend(";");
fpb->codeAppend("vec4 normalColor = ");
fpb->appendTextureLookup(samplers[1], coords[0].c_str(), coords[0].getType());
fpb->codeAppend(";");
fpb->codeAppend("vec3 normal = normalize(2.0*(normalColor.rgb - vec3(0.5)));");
fpb->codeAppendf("vec3 lightDir = normalize(%s);", lightDirUniName);
fpb->codeAppend("float NdotL = dot(normal, lightDir);");
// diffuse light
fpb->codeAppendf("vec3 result = %s.rgb*diffuseColor.rgb*NdotL;", lightColorUniName);
// ambient light
fpb->codeAppendf("result += %s.rgb;", ambientColorUniName);
fpb->codeAppendf("%s = vec4(result.rgb, diffuseColor.a);", outputColor);
}
示例8: onEmitCode
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{
const GrDistanceFieldLCDTextGeoProc& dfTexEffect =
args.fGP.cast<GrDistanceFieldLCDTextGeoProc>();
GrGLGPBuilder* pb = args.fPB;
GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
// emit attributes
vsBuilder->emitAttributes(dfTexEffect);
// setup pass through color
if (!dfTexEffect.colorIgnored()) {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
}
// Setup position
this->setupPosition(pb, gpArgs, dfTexEffect.inPosition()->fName, dfTexEffect.viewMatrix(),
&fViewMatrixUniform);
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, dfTexEffect.inPosition()->fName,
args.fTransformsIn, args.fTransformsOut);
// set up varyings
bool isUniformScale = SkToBool(dfTexEffect.getFlags() & kUniformScale_DistanceFieldEffectMask);
GrGLVertToFrag recipScale(kFloat_GrSLType);
GrGLVertToFrag st(kVec2f_GrSLType);
args.fPB->addVarying("IntTextureCoords", &st, kHigh_GrSLPrecision);
vsBuilder->codeAppendf("%s = %s;", st.vsOut(), dfTexEffect.inTextureCoords()->fName);
GrGLVertToFrag uv(kVec2f_GrSLType);
args.fPB->addVarying("TextureCoords", &uv, kHigh_GrSLPrecision);
// this is only used with text, so our texture bounds always match the glyph atlas
vsBuilder->codeAppendf("%s = vec2(" GR_FONT_ATLAS_A8_RECIP_WIDTH ", "
GR_FONT_ATLAS_RECIP_HEIGHT ")*%s;", uv.vsOut(),
dfTexEffect.inTextureCoords()->fName);
// add frag shader code
GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
SkAssertResult(fsBuilder->enableFeature(
GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
// create LCD offset adjusted by inverse of transform
// Use highp to work around aliasing issues
fsBuilder->codeAppend(GrGLShaderVar::PrecisionString(kHigh_GrSLPrecision,
pb->ctxInfo().standard()));
fsBuilder->codeAppendf("vec2 uv = %s;\n", uv.fsIn());
fsBuilder->codeAppend(GrGLShaderVar::PrecisionString(kHigh_GrSLPrecision,
pb->ctxInfo().standard()));
if (dfTexEffect.getFlags() & kBGR_DistanceFieldEffectFlag) {
fsBuilder->codeAppend("float delta = -" GR_FONT_ATLAS_LCD_DELTA ";\n");
} else {
fsBuilder->codeAppend("float delta = " GR_FONT_ATLAS_LCD_DELTA ";\n");
}
if (isUniformScale) {
fsBuilder->codeAppendf("float dy = abs(dFdy(%s.y));", st.fsIn());
fsBuilder->codeAppend("vec2 offset = vec2(dy*delta, 0.0);");
} else {
fsBuilder->codeAppendf("vec2 st = %s;\n", st.fsIn());
fsBuilder->codeAppend("vec2 Jdx = dFdx(st);");
fsBuilder->codeAppend("vec2 Jdy = dFdy(st);");
fsBuilder->codeAppend("vec2 offset = delta*Jdx;");
}
// green is distance to uv center
fsBuilder->codeAppend("\tvec4 texColor = ");
fsBuilder->appendTextureLookup(args.fSamplers[0], "uv", kVec2f_GrSLType);
fsBuilder->codeAppend(";\n");
fsBuilder->codeAppend("\tvec3 distance;\n");
fsBuilder->codeAppend("\tdistance.y = texColor.r;\n");
// red is distance to left offset
fsBuilder->codeAppend("\tvec2 uv_adjusted = uv - offset;\n");
fsBuilder->codeAppend("\ttexColor = ");
fsBuilder->appendTextureLookup(args.fSamplers[0], "uv_adjusted", kVec2f_GrSLType);
fsBuilder->codeAppend(";\n");
fsBuilder->codeAppend("\tdistance.x = texColor.r;\n");
// blue is distance to right offset
fsBuilder->codeAppend("\tuv_adjusted = uv + offset;\n");
fsBuilder->codeAppend("\ttexColor = ");
fsBuilder->appendTextureLookup(args.fSamplers[0], "uv_adjusted", kVec2f_GrSLType);
fsBuilder->codeAppend(";\n");
fsBuilder->codeAppend("\tdistance.z = texColor.r;\n");
fsBuilder->codeAppend("\tdistance = "
"vec3(" SK_DistanceFieldMultiplier ")*(distance - vec3(" SK_DistanceFieldThreshold"));");
// adjust width based on gamma
const char* distanceAdjustUniName = NULL;
fDistanceAdjustUni = args.fPB->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec3f_GrSLType, kDefault_GrSLPrecision,
"DistanceAdjust", &distanceAdjustUniName);
fsBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName);
// To be strictly correct, we should compute the anti-aliasing factor separately
// for each color component. However, this is only important when using perspective
// transformations, and even then using a single factor seems like a reasonable
// trade-off between quality and speed.
fsBuilder->codeAppend("float afwidth;");
//.........这里部分代码省略.........
示例9: emitCode
void GrGLPerlinNoise::emitCode(GrGLFPBuilder* builder,
const GrFragmentProcessor&,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray& coords,
const TextureSamplerArray& samplers) {
sk_ignore_unused_variable(inputColor);
GrGLFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder();
SkString vCoords = fsBuilder->ensureFSCoords2D(coords, 0);
fBaseFrequencyUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"baseFrequency");
const char* baseFrequencyUni = builder->getUniformCStr(fBaseFrequencyUni);
fAlphaUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kFloat_GrSLType, kDefault_GrSLPrecision,
"alpha");
const char* alphaUni = builder->getUniformCStr(fAlphaUni);
const char* stitchDataUni = NULL;
if (fStitchTiles) {
fStitchDataUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"stitchData");
stitchDataUni = builder->getUniformCStr(fStitchDataUni);
}
// There are 4 lines, so the center of each line is 1/8, 3/8, 5/8 and 7/8
const char* chanCoordR = "0.125";
const char* chanCoordG = "0.375";
const char* chanCoordB = "0.625";
const char* chanCoordA = "0.875";
const char* chanCoord = "chanCoord";
const char* stitchData = "stitchData";
const char* ratio = "ratio";
const char* noiseVec = "noiseVec";
const char* noiseSmooth = "noiseSmooth";
const char* floorVal = "floorVal";
const char* fractVal = "fractVal";
const char* uv = "uv";
const char* ab = "ab";
const char* latticeIdx = "latticeIdx";
const char* bcoords = "bcoords";
const char* lattice = "lattice";
const char* inc8bit = "0.00390625"; // 1.0 / 256.0
// This is the math to convert the two 16bit integer packed into rgba 8 bit input into a
// [-1,1] vector and perform a dot product between that vector and the provided vector.
const char* dotLattice = "dot(((%s.ga + %s.rb * vec2(%s)) * vec2(2.0) - vec2(1.0)), %s);";
// Add noise function
static const GrGLShaderVar gPerlinNoiseArgs[] = {
GrGLShaderVar(chanCoord, kFloat_GrSLType),
GrGLShaderVar(noiseVec, kVec2f_GrSLType)
};
static const GrGLShaderVar gPerlinNoiseStitchArgs[] = {
GrGLShaderVar(chanCoord, kFloat_GrSLType),
GrGLShaderVar(noiseVec, kVec2f_GrSLType),
GrGLShaderVar(stitchData, kVec2f_GrSLType)
};
SkString noiseCode;
noiseCode.appendf("\tvec4 %s;\n", floorVal);
noiseCode.appendf("\t%s.xy = floor(%s);\n", floorVal, noiseVec);
noiseCode.appendf("\t%s.zw = %s.xy + vec2(1.0);\n", floorVal, floorVal);
noiseCode.appendf("\tvec2 %s = fract(%s);\n", fractVal, noiseVec);
// smooth curve : t * t * (3 - 2 * t)
noiseCode.appendf("\n\tvec2 %s = %s * %s * (vec2(3.0) - vec2(2.0) * %s);",
noiseSmooth, fractVal, fractVal, fractVal);
// Adjust frequencies if we're stitching tiles
if (fStitchTiles) {
noiseCode.appendf("\n\tif(%s.x >= %s.x) { %s.x -= %s.x; }",
floorVal, stitchData, floorVal, stitchData);
noiseCode.appendf("\n\tif(%s.y >= %s.y) { %s.y -= %s.y; }",
floorVal, stitchData, floorVal, stitchData);
noiseCode.appendf("\n\tif(%s.z >= %s.x) { %s.z -= %s.x; }",
floorVal, stitchData, floorVal, stitchData);
noiseCode.appendf("\n\tif(%s.w >= %s.y) { %s.w -= %s.y; }",
floorVal, stitchData, floorVal, stitchData);
}
// Get texture coordinates and normalize
noiseCode.appendf("\n\t%s = fract(floor(mod(%s, 256.0)) / vec4(256.0));\n",
floorVal, floorVal);
// Get permutation for x
{
SkString xCoords("");
xCoords.appendf("vec2(%s.x, 0.5)", floorVal);
noiseCode.appendf("\n\tvec2 %s;\n\t%s.x = ", latticeIdx, latticeIdx);
fsBuilder->appendTextureLookup(&noiseCode, samplers[0], xCoords.c_str(), kVec2f_GrSLType);
noiseCode.append(".r;");
}
// Get permutation for x + 1
//.........这里部分代码省略.........
示例10: emitCode
void GrGLDisplacementMapEffect::emitCode(GrGLFPBuilder* builder,
const GrFragmentProcessor& fp,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray& coords,
const TextureSamplerArray& samplers) {
const GrTextureDomain& domain = fp.cast<GrDisplacementMapEffect>().domain();
sk_ignore_unused_variable(inputColor);
fScaleUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision, "Scale");
const char* scaleUni = builder->getUniformCStr(fScaleUni);
const char* dColor = "dColor";
const char* cCoords = "cCoords";
const char* nearZero = "1e-6"; // Since 6.10352e−5 is the smallest half float, use
// a number smaller than that to approximate 0, but
// leave room for 32-bit float GPU rounding errors.
GrGLFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder();
fsBuilder->codeAppendf("\t\tvec4 %s = ", dColor);
fsBuilder->appendTextureLookup(samplers[0], coords[0].c_str(), coords[0].getType());
fsBuilder->codeAppend(";\n");
// Unpremultiply the displacement
fsBuilder->codeAppendf("\t\t%s.rgb = (%s.a < %s) ? vec3(0.0) : clamp(%s.rgb / %s.a, 0.0, 1.0);",
dColor, dColor, nearZero, dColor, dColor);
SkString coords2D = fsBuilder->ensureFSCoords2D(coords, 1);
fsBuilder->codeAppendf("\t\tvec2 %s = %s + %s*(%s.",
cCoords, coords2D.c_str(), scaleUni, dColor);
switch (fXChannelSelector) {
case SkDisplacementMapEffect::kR_ChannelSelectorType:
fsBuilder->codeAppend("r");
break;
case SkDisplacementMapEffect::kG_ChannelSelectorType:
fsBuilder->codeAppend("g");
break;
case SkDisplacementMapEffect::kB_ChannelSelectorType:
fsBuilder->codeAppend("b");
break;
case SkDisplacementMapEffect::kA_ChannelSelectorType:
fsBuilder->codeAppend("a");
break;
case SkDisplacementMapEffect::kUnknown_ChannelSelectorType:
default:
SkDEBUGFAIL("Unknown X channel selector");
}
switch (fYChannelSelector) {
case SkDisplacementMapEffect::kR_ChannelSelectorType:
fsBuilder->codeAppend("r");
break;
case SkDisplacementMapEffect::kG_ChannelSelectorType:
fsBuilder->codeAppend("g");
break;
case SkDisplacementMapEffect::kB_ChannelSelectorType:
fsBuilder->codeAppend("b");
break;
case SkDisplacementMapEffect::kA_ChannelSelectorType:
fsBuilder->codeAppend("a");
break;
case SkDisplacementMapEffect::kUnknown_ChannelSelectorType:
default:
SkDEBUGFAIL("Unknown Y channel selector");
}
fsBuilder->codeAppend("-vec2(0.5));\t\t");
fGLDomain.sampleTexture(fsBuilder, domain, outputColor, SkString(cCoords), samplers[1]);
fsBuilder->codeAppend(";\n");
}
示例11: emitCode
void GrGLMorphologyEffect::emitCode(EmitArgs& args) {
fPixelSizeUni = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kFloat_GrSLType, kDefault_GrSLPrecision,
"PixelSize");
const char* pixelSizeInc = args.fBuilder->getUniformCStr(fPixelSizeUni);
fRangeUni = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"Range");
const char* range = args.fBuilder->getUniformCStr(fRangeUni);
GrGLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder();
SkString coords2D = fsBuilder->ensureFSCoords2D(args.fCoords, 0);
const char* func;
switch (fType) {
case GrMorphologyEffect::kErode_MorphologyType:
fsBuilder->codeAppendf("\t\t%s = vec4(1, 1, 1, 1);\n", args.fOutputColor);
func = "min";
break;
case GrMorphologyEffect::kDilate_MorphologyType:
fsBuilder->codeAppendf("\t\t%s = vec4(0, 0, 0, 0);\n", args.fOutputColor);
func = "max";
break;
default:
SkFAIL("Unexpected type");
func = ""; // suppress warning
break;
}
const char* dir;
switch (fDirection) {
case Gr1DKernelEffect::kX_Direction:
dir = "x";
break;
case Gr1DKernelEffect::kY_Direction:
dir = "y";
break;
default:
SkFAIL("Unknown filter direction.");
dir = ""; // suppress warning
}
// vec2 coord = coord2D;
fsBuilder->codeAppendf("\t\tvec2 coord = %s;\n", coords2D.c_str());
// coord.x -= radius * pixelSize;
fsBuilder->codeAppendf("\t\tcoord.%s -= %d.0 * %s; \n", dir, fRadius, pixelSizeInc);
if (fUseRange) {
// highBound = min(highBound, coord.x + (width-1) * pixelSize);
fsBuilder->codeAppendf("\t\tfloat highBound = min(%s.y, coord.%s + %f * %s);",
range, dir, float(width() - 1), pixelSizeInc);
// coord.x = max(lowBound, coord.x);
fsBuilder->codeAppendf("\t\tcoord.%s = max(%s.x, coord.%s);", dir, range, dir);
}
fsBuilder->codeAppendf("\t\tfor (int i = 0; i < %d; i++) {\n", width());
fsBuilder->codeAppendf("\t\t\t%s = %s(%s, ", args.fOutputColor, func, args.fOutputColor);
fsBuilder->appendTextureLookup(args.fSamplers[0], "coord");
fsBuilder->codeAppend(");\n");
// coord.x += pixelSize;
fsBuilder->codeAppendf("\t\t\tcoord.%s += %s;\n", dir, pixelSizeInc);
if (fUseRange) {
// coord.x = min(highBound, coord.x);
fsBuilder->codeAppendf("\t\t\tcoord.%s = min(highBound, coord.%s);", dir, dir);
}
fsBuilder->codeAppend("\t\t}\n");
SkString modulate;
GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor);
fsBuilder->codeAppend(modulate.c_str());
}