本文整理汇总了C++中GpuVoxelsSharedPtr::clearMap方法的典型用法代码示例。如果您正苦于以下问题:C++ GpuVoxelsSharedPtr::clearMap方法的具体用法?C++ GpuVoxelsSharedPtr::clearMap怎么用?C++ GpuVoxelsSharedPtr::clearMap使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GpuVoxelsSharedPtr
的用法示例。
在下文中一共展示了GpuVoxelsSharedPtr::clearMap方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
//.........这里部分代码省略.........
// initialize the joint interpolation
std::size_t counter = 0;
const float ratio_delta = 0.02;
robot::JointValueMap min_joint_values;
min_joint_values["z_translation"] = 0.0; // moves along the Z axis
min_joint_values["y_translation"] = 0.5; // moves along the Y Axis
min_joint_values["x_translation"] = 0.5; // moves along the X Axis
min_joint_values["hollie/arm_0_link.xyz"] = 1.0;
min_joint_values["hollie/arm_1_link.xyz"] = 1.0;
min_joint_values["hollie/arm_2_link.xyz"] = 1.0;
min_joint_values["hollie/arm_3_link.xyz"] = 1.0;
min_joint_values["hollie/arm_4_link.xyz"] = 1.0;
min_joint_values["hollie/arm_5_link.xyz"] = 1.0;
min_joint_values["hollie/arm_6_link.xyz"] = 1.0;
robot::JointValueMap max_joint_values;
max_joint_values["z_translation"] = 0.0; // moves along the Z axis
max_joint_values["y_translation"] = 2.5; // moves along the Y axis
max_joint_values["x_translation"] = 2.5; // moves along the X Axis
max_joint_values["hollie/arm_0_link.xyz"] = 1.5;
max_joint_values["hollie/arm_1_link.xyz"] = 1.5;
max_joint_values["hollie/arm_2_link.xyz"] = 1.5;
max_joint_values["hollie/arm_3_link.xyz"] = 1.5;
max_joint_values["hollie/arm_4_link.xyz"] = 1.5;
max_joint_values["hollie/arm_5_link.xyz"] = 1.5;
max_joint_values["hollie/arm_6_link.xyz"] = 1.5;
const int num_swept_volumes = 50;// < BIT_VECTOR_LENGTH;
/*
* SWEPT VOLUME:
* The robot moves and changes it's pose, so we "voxelize"
* the links in every step and insert it into the robot map.
* As the map is not cleared, this will generate a sweep.
* The ID within the sweep is incremented with the single poses
* so we can later identify, which pose created a collision.
*/
LOGGING_INFO(Gpu_voxels, "Generating Swept Volume..." << endl);
robot::JointValueMap myRobotJointValues;
for (int i = 0; i < num_swept_volumes; ++i)
{
myRobotJointValues = gpu_voxels::interpolateLinear(min_joint_values, max_joint_values,
ratio_delta * counter++);
gvl->setRobotConfiguration("myRobot", myRobotJointValues);
BitVoxelMeaning v = BitVoxelMeaning(eBVM_SWEPT_VOLUME_START + 1 + i);
gvl->insertRobotIntoMap("myRobot", "myRobotMap", v);
}
/*
* MAIN LOOP:
* In this loop we update the Kinect Pointcloud
* and collide it with the Swept-Volume of the robot.
*/
LOGGING_INFO(Gpu_voxels, "Starting collision detection..." << endl);
while (true)
{
// Insert Kinect data (in cam-coordinate system)
gvl->updateRobotPart("kinectData", "kinect", kinect->getDataPtr());
// Call setRobotConfiguration to trigger transformation of Kinect data:
gvl->setRobotConfiguration("kinectData", kinect_joints);
// Insert the Kinect data (now in world coordinates) into the map
gvl->insertRobotIntoMap("kinectData", "myEnvironmentMap", eBVM_OCCUPIED);
size_t num_cols = 0;
BitVectorVoxel collision_types;
num_cols = gvl->getMap("myEnvironmentMap")->as<NTree::GvlNTreeDet>()->collideWithTypes(gvl->getMap("myRobotMap")->as<voxelmap::BitVectorVoxelMap>(), collision_types, 1.0f);
LOGGING_INFO(Gpu_voxels, "Collsions: " << num_cols << endl);
printf("Voxel types in collision:\n");
DrawTypes draw_types;
for(size_t i = 0; i < BIT_VECTOR_LENGTH; ++i)
{
if(collision_types.bitVector().getBit(i))
{
draw_types.draw_types[i] = 1;
printf("%lu; ", i);
}
}
printf("\n");
// this informs the visualizer which Sub-Volumes should be rendered
gvl->getVisualization("myRobotMap")->setDrawTypes(draw_types);
// tell the visualizer that the data has changed.
gvl->visualizeMap("myRobotMap");
gvl->visualizeMap("myEnvironmentMap");
usleep(10000);
// We only clear the environment to update it with new Kinect data.
// The robot maps stays static to not loose the Sweeps.
gvl->clearMap("myEnvironmentMap");
}
}
示例2: main
//.........这里部分代码省略.........
/*
* First, we generate an API class, which defines the
* volume of our space and the resolution.
* Be careful here! The size is limited by the memory
* of your GPU. Even if an empty Octree is small, a
* Voxelmap will always require the full memory.
*/
gvl = GpuVoxels::getInstance();
gvl->initialize(200, 200, 200, 0.01);
// Now we add some maps
gvl->addMap(MT_PROBAB_VOXELMAP, "myProbabVoxmap");
gvl->addMap(MT_BITVECTOR_VOXELMAP, "myBitmapVoxmap");
gvl->addMap(MT_BITVECTOR_OCTREE, "myOctree");
gvl->addMap(MT_PROBAB_VOXELMAP, "myCoordinateSystemMap");
// And two different primitive types
gvl->addPrimitives(primitive_array::ePRIM_SPHERE, "myPrims");
gvl->addPrimitives(primitive_array::ePRIM_CUBOID, "mySecondPrims");
std::vector<Vector4f> prim_positions(1000);
std::vector<Vector4i> prim_positions2(1000);
// These coordinates are used for three boxes that are inserted into the maps
Vector3f center1_min(0.5,0.5,0.5);
Vector3f center1_max(0.6,0.6,0.6);
Vector3f center2_min(0.5,0.5,0.5);
Vector3f center2_max(0.6,0.6,0.6);
Vector3f center3_min(0.5,0.5,0.5);
Vector3f center3_max(0.6,0.6,0.6);
Vector3f corner1_min;
Vector3f corner2_min;
Vector3f corner3_min;
Vector3f corner1_max;
Vector3f corner2_max;
Vector3f corner3_max;
// We load the model of a coordinate system.
if (!gvl->insertPointCloudFromFile("myCoordinateSystemMap", "coordinate_system_100.binvox", true,
eBVM_OCCUPIED, true, Vector3f(0, 0, 0),0.5))
{
LOGGING_WARNING(Gpu_voxels, "Could not insert the PCD file..." << endl);
}
/*
* Now we start the main loop, that will animate the scene.
*/
float t = 0.0;
int j = 0;
while(true)
{
// Calculate new positions for the boxes
float x = sin(t);
float y = cos(t);
t += 0.03;
corner1_min = center1_min + Vector3f(0.2 * x, 0.2 * y, 0);
corner1_max = center1_max + Vector3f(0.2 * x, 0.2 * y, 0);
gvl->insertBoxIntoMap(corner1_min, corner1_max, "myProbabVoxmap", eBVM_OCCUPIED, 2);
corner2_min = center2_min + Vector3f(0.0, 0.2 * x, 0.2 * y);
corner2_max = center2_max + Vector3f(0.0, 0.2 * x, 0.2 * y);
gvl->insertBoxIntoMap(corner3_min, corner3_max, "myBitmapVoxmap", eBVM_OCCUPIED, 2);
corner3_min = center3_min + Vector3f(0.2 * x, 0.0, 0.2 * y);
corner3_max = center3_max + Vector3f(0.2 * x, 0.0, 0.2 * y);
gvl->insertBoxIntoMap(corner2_min, corner2_max, "myOctree", eBVM_OCCUPIED, 2);
// generate info on the occuring collisions:
LOGGING_INFO(
Gpu_voxels, "Collsions myProbabVoxmap + myBitmapVoxmap: " << gvl->getMap("myProbabVoxmap")->as<voxelmap::ProbVoxelMap>()->collideWith(gvl->getMap("myBitmapVoxmap")->as<voxelmap::BitVectorVoxelMap>()) << endl <<
"Collsions myOctree + myBitmapVoxmap: " << gvl->getMap("myOctree")->as<NTree::GvlNTreeDet>()->collideWith(gvl->getMap("myBitmapVoxmap")->as<voxelmap::BitVectorVoxelMap>()) << endl <<
"Collsions myOctree + myProbabVoxmap: " << gvl->getMap("myOctree")->as<NTree::GvlNTreeDet>()->collideWith(gvl->getMap("myProbabVoxmap")->as<voxelmap::ProbVoxelMap>()) << endl);
// tell the visualier that the maps have changed
gvl->visualizeMap("myProbabVoxmap");
gvl->visualizeMap("myBitmapVoxmap");
gvl->visualizeMap("myOctree");
gvl->visualizeMap("myCoordinateSystemMap");
// update the primitves:
for(size_t i = 0; i < prim_positions.size(); i++)
{
// x, y, z, size
prim_positions[i] = Vector4f(0.2 + (i / 250.0), 0.2 + (sin(i/5.0)/50.0), (sin(j/5.0) / 50.0), 0.01);
prim_positions2[i] = Vector4i(20 + (sin(i/5.0)/0.5), 20 + (sin(j/5.0) / 0.5), i / 2.5, 1);
j++;
}
gvl->modifyPrimitives("myPrims", prim_positions);
gvl->modifyPrimitives("mySecondPrims", prim_positions2);
// tell the visualizier that the data has changed:
gvl->visualizePrimitivesArray("myPrims");
gvl->visualizePrimitivesArray("mySecondPrims");
usleep(30000);
// Reset the maps:
gvl->clearMap("myProbabVoxmap");
gvl->clearMap("myBitmapVoxmap");
gvl->clearMap("myOctree");
}
}