本文整理汇总了C++中GpuVoxelsSharedPtr类的典型用法代码示例。如果您正苦于以下问题:C++ GpuVoxelsSharedPtr类的具体用法?C++ GpuVoxelsSharedPtr怎么用?C++ GpuVoxelsSharedPtr使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了GpuVoxelsSharedPtr类的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
int main(int argc, char* argv[])
{
signal(SIGINT, ctrlchandler);
signal(SIGTERM, killhandler);
icl_core::logging::initialize(argc, argv);
gvl = GpuVoxels::getInstance();
Vector3ui dim(89, 123, 74);
float side_length = 1.f; // voxel side length
gvl->initialize(dim.x, dim.y, dim.z, side_length);
gvl->addMap(MT_PROBAB_VOXELMAP, "myProbVoxelMap1");
gvl->addMap(MT_PROBAB_VOXELMAP, "myProbVoxelMap2");
boost::shared_ptr<ProbVoxelMap> map_1(gvl->getMap("myProbVoxelMap1")->as<ProbVoxelMap>());
boost::shared_ptr<ProbVoxelMap> map_2(gvl->getMap("myProbVoxelMap2")->as<ProbVoxelMap>());
std::vector<Vector3f> this_testpoints1;
std::vector<Vector3f> this_testpoints2;
this_testpoints1 = createBoxOfPoints( Vector3f(2.1, 2.1, 2.1), Vector3f(4.1, 4.1, 4.1), 0.5);
this_testpoints2 = createBoxOfPoints( Vector3f(3.1, 3.1, 3.1), Vector3f(5.1, 5.1, 5.1), 0.5);
map_1->insertPointCloud(this_testpoints1, eBVM_OCCUPIED);
map_2->insertPointCloud(this_testpoints2, eBVM_OCCUPIED);
std::cout << "Collisions w offset: " << map_1->collideWith(map_2.get(), 0.1, Vector3i(-1,-0,-1)) << std::endl;
std::cout << "Collisions w/o offset: " << map_1->collideWith(map_2.get(), 0.1) << std::endl;
while(true)
{
gvl->visualizeMap("myProbVoxelMap1");
gvl->visualizeMap("myProbVoxelMap2");
sleep(1);
}
return 0;
}
示例2: main
int main(int argc, char* argv[])
{
signal(SIGINT, ctrlchandler);
signal(SIGTERM, killhandler);
icl_core::config::GetoptParameter ident_parameter("device-identifier:", "id",
"Identifer of the kinect device");
icl_core::config::addParameter(ident_parameter);
icl_core::logging::initialize(argc, argv);
std::string identifier = icl_core::config::Getopt::instance().paramOpt("device-identifier");
/*
* First, we generate an API class, which defines the
* volume of our space and the resolution.
* Be careful here! The size is limited by the memory
* of your GPU. Even if an empty Octree is small, a
* Voxelmap will always require the full memory.
*/
gvl = GpuVoxels::getInstance();
gvl->initialize(200, 200, 100, 0.02);
/*
* Now we add a map, that will represent the robot.
* The robot is inserted with deterministic poses,
* so a deterministic map is sufficient here.
*/
gvl->addMap(MT_BITVECTOR_VOXELMAP, "myRobotMap");
/*
* A second map will represent the environment.
* As it is captured by a sensor, this map is probabilistic.
*/
gvl->addMap(MT_BITVECTOR_OCTREE, "myEnvironmentMap");
/*
* Lets create a kinect driver and an according pointcloud.
* To allow easy transformation of the Kinect pose,
* we declare it as a robot and model a pan-tilt-unit.
*/
Kinect* kinect = new Kinect(identifier);
kinect->run();
std::vector<std::string> kinect_link_names(6);
kinect_link_names[0] = "z_translation";
kinect_link_names[1] = "y_translation";
kinect_link_names[2] = "x_translation";
kinect_link_names[3] = "pan";
kinect_link_names[4] = "tilt";
kinect_link_names[5] = "kinect";
std::vector<robot::DHParameters> kinect_dh_params(6);
kinect_dh_params[0] = robot::DHParameters(0.0, 0.0, 0.0, -1.5708, 0.0, robot::PRISMATIC); // Params for Y translation
kinect_dh_params[1] = robot::DHParameters(0.0, -1.5708, 0.0, -1.5708, 0.0, robot::PRISMATIC); // Params for X translation
kinect_dh_params[2] = robot::DHParameters(0.0, 1.5708, 0.0, 1.5708, 0.0, robot::PRISMATIC); // Params for Pan axis
kinect_dh_params[3] = robot::DHParameters(0.0, 1.5708, 0.0, 1.5708, 0.0, robot::REVOLUTE); // Params for Tilt axis
kinect_dh_params[4] = robot::DHParameters(0.0, 0.0, 0.0, -3.1415, 0.0, robot::REVOLUTE); // Params for Kinect
kinect_dh_params[5] = robot::DHParameters(0.0, 0.0, 0.0, 0.0, 0.0, robot::REVOLUTE); // Pseudo Param
robot::JointValueMap kinect_joints;
kinect_joints["z_translation"] = 0.6; // moves along the Z axis
kinect_joints["y_translation"] = 1.0; // moves along the Y Axis
kinect_joints["x_translation"] = 1.0; // moves along the X Axis
kinect_joints["pan"] = -0.7;
kinect_joints["tilt"] = 0.5;
std::vector<Vector3f> kinect_pc(640*480);
MetaPointCloud myKinectCloud;
myKinectCloud.addCloud(kinect_pc, true, kinect_link_names[5]);
gvl->addRobot("kinectData", kinect_link_names, kinect_dh_params, myKinectCloud);
/*
* Of course, we need a robot. At this point, you can choose between
* describing your robot via ROS URDF or via conventional DH parameter.
* In this example, we simply hardcode a DH robot:
*/
// First, we load the robot geometry which contains 9 links with 7 geometries:
// Geometries are required to have the same names as links, if they should get transformed.
std::vector<std::string> linknames(10);
std::vector<std::string> paths_to_pointclouds(7);
linknames[0] = "z_translation";
linknames[1] = "y_translation";
linknames[2] = "x_translation";
linknames[3] = paths_to_pointclouds[0] = "hollie/arm_0_link.xyz";
linknames[4] = paths_to_pointclouds[1] = "hollie/arm_1_link.xyz";
linknames[5] = paths_to_pointclouds[2] = "hollie/arm_2_link.xyz";
linknames[6] = paths_to_pointclouds[3] = "hollie/arm_3_link.xyz";
linknames[7] = paths_to_pointclouds[4] = "hollie/arm_4_link.xyz";
linknames[8] = paths_to_pointclouds[5] = "hollie/arm_5_link.xyz";
linknames[9] = paths_to_pointclouds[6] = "hollie/arm_6_link.xyz";
std::vector<robot::DHParameters> dh_params(10);
// _d, _theta, _a, _alpha, _value, _type
dh_params[0] = robot::DHParameters(0.0, 0.0, 0.0, -1.5708, 0.0, robot::PRISMATIC); // Params for Y translation
dh_params[1] = robot::DHParameters(0.0, -1.5708, 0.0, -1.5708, 0.0, robot::PRISMATIC); // Params for X translation
dh_params[2] = robot::DHParameters(0.0, 1.5708, 0.0, 1.5708, 0.0, robot::PRISMATIC); // Params for first Robot axis (visualized by 0_link)
dh_params[3] = robot::DHParameters(0.0, 1.5708, 0.0, 1.5708, 0.0, robot::REVOLUTE); // Params for second Robot axis (visualized by 1_link)
dh_params[4] = robot::DHParameters(0.0, 0.0, 0.35, -3.1415, 0.0, robot::REVOLUTE); //
//.........这里部分代码省略.........
示例3: killhandler
void killhandler(int)
{
gvl.reset();
exit(EXIT_SUCCESS);
}
示例4: ctrlchandler
void ctrlchandler(int)
{
gvl.reset();
exit(EXIT_SUCCESS);
}
示例5: main
int main(int argc, char* argv[])
{
signal(SIGINT, ctrlchandler);
signal(SIGTERM, killhandler);
icl_core::logging::initialize(argc, argv);
gvl = GpuVoxels::getInstance();
Vector3ui dim(136, 136, 136);
float side_length = 1.0; // voxel side length
gvl->initialize(dim.x, dim.y, dim.z, side_length);
gvl->addMap(MT_PROBAB_VOXELMAP, "myProbVoxelMap");
boost::shared_ptr<ProbVoxelMap> prob_map(gvl->getMap("myProbVoxelMap")->as<ProbVoxelMap>());
std::vector<Vector3f> boxpoints;
boxpoints = createBoxOfPoints( Vector3f(10, 10, 30), Vector3f(30, 30, 50), 0.9); // choose large delta, so that only 1 point falls into each voxel (mostly)
PointCloud box(boxpoints);
Matrix4f shift_diag_up(Matrix4f::createFromRotationAndTranslation(Matrix3f::createIdentity(), Vector3f(0, 15, 15)));
Matrix4f shift_down(Matrix4f::createFromRotationAndTranslation(Matrix3f::createIdentity(), Vector3f(0, 15, -15)));
Matrix4f shift_diag_down(Matrix4f::createFromRotationAndTranslation(Matrix3f::createIdentity(), Vector3f(0, -15, -15)));
// insert cube into map
prob_map->insertPointCloud(box, eBVM_MAX_OCC_PROB); // = 254
box.transformSelf(&shift_diag_up);
prob_map->insertPointCloud(box, eBVM_MAX_OCC_PROB); // = 254
box.transformSelf(&shift_diag_up);
prob_map->insertPointCloud(box, BitVoxelMeaning(229));
box.transformSelf(&shift_diag_up);
prob_map->insertPointCloud(box, BitVoxelMeaning(204));
box.transformSelf(&shift_diag_up);
prob_map->insertPointCloud(box, BitVoxelMeaning(179));
box.transformSelf(&shift_diag_up);
prob_map->insertPointCloud(box, BitVoxelMeaning(154));
box.transformSelf(&shift_down);
// eBVM_UNCERTAIN_OCC_PROB); // = 129
prob_map->insertPointCloud(box, BitVoxelMeaning(104));
box.transformSelf(&shift_diag_down);
prob_map->insertPointCloud(box, BitVoxelMeaning(79));
box.transformSelf(&shift_diag_down);
prob_map->insertPointCloud(box, BitVoxelMeaning(54));
box.transformSelf(&shift_diag_down);
prob_map->insertPointCloud(box, BitVoxelMeaning(29));
box.transformSelf(&shift_diag_down);
prob_map->insertPointCloud(box, eBVM_MAX_FREE_PROB); // = 4
box.transformSelf(&shift_diag_down);
prob_map->insertPointCloud(box, eBVM_MAX_FREE_PROB); // = 4
boxpoints = createBoxOfPoints( Vector3f(10, 5, 5), Vector3f(12, 130, 130), 0.9); // choose large delta, so that only 1 point falls into each voxel (mostly)
box = PointCloud(boxpoints);
prob_map->insertPointCloud(box, eBVM_UNCERTAIN_OCC_PROB); // = 129
// this will not influence voxels which were also set to other probabilities, as it converts to adding 0 to their values.
while(true)
{
gvl->visualizeMap("myProbVoxelMap");
// this will show partly overlapping cubes, whose occupancy values will get summed up.
// all "unknown" voxels will not get drawn, but the uncertain ones will (unkown = initialization value, uncertain = 0.5 probability)
sleep(1);
}
return 0;
}
示例6: main
int main(int argc, char* argv[])
{
signal(SIGINT, ctrlchandler);
signal(SIGTERM, killhandler);
icl_core::logging::initialize(argc, argv);
/*
* First, we generate an API class, which defines the
* volume of our space and the resolution.
* Be careful here! The size is limited by the memory
* of your GPU. Even if an empty Octree is small, a
* Voxelmap will always require the full memory.
*/
gvl = GpuVoxels::getInstance();
gvl->initialize(200, 200, 200, 0.01);
// Now we add some maps
gvl->addMap(MT_PROBAB_VOXELMAP, "myProbabVoxmap");
gvl->addMap(MT_BITVECTOR_VOXELMAP, "myBitmapVoxmap");
gvl->addMap(MT_BITVECTOR_OCTREE, "myOctree");
gvl->addMap(MT_PROBAB_VOXELMAP, "myCoordinateSystemMap");
// And two different primitive types
gvl->addPrimitives(primitive_array::ePRIM_SPHERE, "myPrims");
gvl->addPrimitives(primitive_array::ePRIM_CUBOID, "mySecondPrims");
std::vector<Vector4f> prim_positions(1000);
std::vector<Vector4i> prim_positions2(1000);
// These coordinates are used for three boxes that are inserted into the maps
Vector3f center1_min(0.5,0.5,0.5);
Vector3f center1_max(0.6,0.6,0.6);
Vector3f center2_min(0.5,0.5,0.5);
Vector3f center2_max(0.6,0.6,0.6);
Vector3f center3_min(0.5,0.5,0.5);
Vector3f center3_max(0.6,0.6,0.6);
Vector3f corner1_min;
Vector3f corner2_min;
Vector3f corner3_min;
Vector3f corner1_max;
Vector3f corner2_max;
Vector3f corner3_max;
// We load the model of a coordinate system.
if (!gvl->insertPointCloudFromFile("myCoordinateSystemMap", "coordinate_system_100.binvox", true,
eBVM_OCCUPIED, true, Vector3f(0, 0, 0),0.5))
{
LOGGING_WARNING(Gpu_voxels, "Could not insert the PCD file..." << endl);
}
/*
* Now we start the main loop, that will animate the scene.
*/
float t = 0.0;
int j = 0;
while(true)
{
// Calculate new positions for the boxes
float x = sin(t);
float y = cos(t);
t += 0.03;
corner1_min = center1_min + Vector3f(0.2 * x, 0.2 * y, 0);
corner1_max = center1_max + Vector3f(0.2 * x, 0.2 * y, 0);
gvl->insertBoxIntoMap(corner1_min, corner1_max, "myProbabVoxmap", eBVM_OCCUPIED, 2);
corner2_min = center2_min + Vector3f(0.0, 0.2 * x, 0.2 * y);
corner2_max = center2_max + Vector3f(0.0, 0.2 * x, 0.2 * y);
gvl->insertBoxIntoMap(corner3_min, corner3_max, "myBitmapVoxmap", eBVM_OCCUPIED, 2);
corner3_min = center3_min + Vector3f(0.2 * x, 0.0, 0.2 * y);
corner3_max = center3_max + Vector3f(0.2 * x, 0.0, 0.2 * y);
gvl->insertBoxIntoMap(corner2_min, corner2_max, "myOctree", eBVM_OCCUPIED, 2);
// generate info on the occuring collisions:
LOGGING_INFO(
Gpu_voxels, "Collsions myProbabVoxmap + myBitmapVoxmap: " << gvl->getMap("myProbabVoxmap")->as<voxelmap::ProbVoxelMap>()->collideWith(gvl->getMap("myBitmapVoxmap")->as<voxelmap::BitVectorVoxelMap>()) << endl <<
"Collsions myOctree + myBitmapVoxmap: " << gvl->getMap("myOctree")->as<NTree::GvlNTreeDet>()->collideWith(gvl->getMap("myBitmapVoxmap")->as<voxelmap::BitVectorVoxelMap>()) << endl <<
"Collsions myOctree + myProbabVoxmap: " << gvl->getMap("myOctree")->as<NTree::GvlNTreeDet>()->collideWith(gvl->getMap("myProbabVoxmap")->as<voxelmap::ProbVoxelMap>()) << endl);
// tell the visualier that the maps have changed
gvl->visualizeMap("myProbabVoxmap");
gvl->visualizeMap("myBitmapVoxmap");
gvl->visualizeMap("myOctree");
gvl->visualizeMap("myCoordinateSystemMap");
// update the primitves:
for(size_t i = 0; i < prim_positions.size(); i++)
{
// x, y, z, size
prim_positions[i] = Vector4f(0.2 + (i / 250.0), 0.2 + (sin(i/5.0)/50.0), (sin(j/5.0) / 50.0), 0.01);
prim_positions2[i] = Vector4i(20 + (sin(i/5.0)/0.5), 20 + (sin(j/5.0) / 0.5), i / 2.5, 1);
j++;
}
gvl->modifyPrimitives("myPrims", prim_positions);
gvl->modifyPrimitives("mySecondPrims", prim_positions2);
// tell the visualizier that the data has changed:
gvl->visualizePrimitivesArray("myPrims");
gvl->visualizePrimitivesArray("mySecondPrims");
usleep(30000);
//.........这里部分代码省略.........
示例7: main
int main(int argc, char* argv[])
{
signal(SIGINT, ctrlchandler);
signal(SIGTERM, killhandler);
icl_core::logging::initialize(argc, argv);
gvl = GpuVoxels::getInstance();
gvl->initialize(200, 200, 100, 3.0);
gvl->addMap(MT_BITVECTOR_VOXELLIST, "voxellist");
// This should result in two lines of points with equal spacing inbetween the points of each line.
// The Primitives hover a bit above the pointcloud points.
std::vector<Vector3f> listPoints;
listPoints.push_back(Vector3f(30.0f, 9.0f, 12.0f));
listPoints.push_back(Vector3f(30.0f,15.0f, 12.0f));
listPoints.push_back(Vector3f(30.0f,21.0f, 12.0f));
listPoints.push_back(Vector3f(30.0f,27.0f, 12.0f));
std::vector<Vector3f> metric3Point;
metric3Point.push_back(Vector3f(30.0f,9.0f,9.0f));
std::vector<Vector4f> metric4Point;
metric4Point.push_back(Vector4f(30.0f,15.0f,9.0f,3.0f));
std::vector<Vector3i> voxel3Point;
voxel3Point.push_back(Vector3i(10,7,3));
std::vector<Vector4i> voxel4Point;
voxel4Point.push_back(Vector4i(10,9,3,1));
gvl->insertPointCloudIntoMap(listPoints, "voxellist", BitVoxelMeaning(1));
gvl->addPrimitives(primitive_array::ePRIM_SPHERE, "metric3Sphere");
bool prim = gvl->modifyPrimitives("metric3Sphere", metric3Point, 3.0f);
gvl->addPrimitives(primitive_array::ePRIM_SPHERE, "metric4Sphere");
prim = gvl->modifyPrimitives("metric4Sphere", metric4Point);
gvl->addPrimitives(primitive_array::ePRIM_SPHERE, "voxel3Sphere");
prim = gvl->modifyPrimitives("voxel3Sphere", voxel3Point, 1);
gvl->addPrimitives(primitive_array::ePRIM_SPHERE, "voxel4Sphere");
prim = gvl->modifyPrimitives("voxel4Sphere", voxel4Point);
std::cout << "Entering Draw Loop : " << prim << std::endl;
while(true)
{
gvl->visualizeMap("voxellist");
gvl->visualizePrimitivesArray("metric3Sphere");
gvl->visualizePrimitivesArray("metric4Sphere");
gvl->visualizePrimitivesArray("voxel3Sphere");
gvl->visualizePrimitivesArray("voxel4Sphere");
}
}
示例8: killhandler
void killhandler(int)
{
//delete gvl;
gvl.reset();
exit(EXIT_SUCCESS);
}