本文整理汇总了C++中GestureRecognitionPipeline::getUnProcessedPredictedClassLabel方法的典型用法代码示例。如果您正苦于以下问题:C++ GestureRecognitionPipeline::getUnProcessedPredictedClassLabel方法的具体用法?C++ GestureRecognitionPipeline::getUnProcessedPredictedClassLabel怎么用?C++ GestureRecognitionPipeline::getUnProcessedPredictedClassLabel使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GestureRecognitionPipeline
的用法示例。
在下文中一共展示了GestureRecognitionPipeline::getUnProcessedPredictedClassLabel方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
int main (int argc, const char * argv[])
{
//Create a new gesture recognition pipeline
GestureRecognitionPipeline pipeline;
//Add an ANBC module
pipeline.setClassifier( ANBC() );
//Add a ClassLabelFilter as a post processing module with a minCount of 5 and a buffer size of 10
pipeline.addPostProcessingModule( ClassLabelFilter(5,10) );
//Load some training data to train and test the classifier
ClassificationData trainingData;
ClassificationData testData;
if( !trainingData.loadDatasetFromFile("ClassLabelFilterTrainingData.txt") ){
cout << "Failed to load training data!\n";
return EXIT_FAILURE;
}
if( !testData.loadDatasetFromFile("ClassLabelFilterTestData.txt") ){
cout << "Failed to load training data!\n";
return EXIT_FAILURE;
}
//Train the classifier
if( !pipeline.train( trainingData ) ){
cout << "Failed to train classifier!\n";
return EXIT_FAILURE;
}
//Use the test dataset to demonstrate the output of the ClassLabelFilter
for(UINT i=0; i<testData.getNumSamples(); i++){
VectorDouble inputVector = testData[i].getSample();
if( !pipeline.predict( inputVector ) ){
cout << "Failed to perform prediction for test sampel: " << i <<"\n";
return EXIT_FAILURE;
}
//Get the predicted class label (this will be the processed class label)
UINT predictedClassLabel = pipeline.getPredictedClassLabel();
//Get the unprocessed class label (i.e. the direct output of the classifier)
UINT unprocessedClassLabel = pipeline.getUnProcessedPredictedClassLabel();
//Also print the results to the screen
cout << "Processed Class Label: \t" << predictedClassLabel << "\tUnprocessed Class Label: \t" << unprocessedClassLabel << endl;
}
return EXIT_SUCCESS;
}