当前位置: 首页>>代码示例>>C++>>正文


C++ GestureRecognitionPipeline::getTrainingResults方法代码示例

本文整理汇总了C++中GestureRecognitionPipeline::getTrainingResults方法的典型用法代码示例。如果您正苦于以下问题:C++ GestureRecognitionPipeline::getTrainingResults方法的具体用法?C++ GestureRecognitionPipeline::getTrainingResults怎么用?C++ GestureRecognitionPipeline::getTrainingResults使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GestureRecognitionPipeline的用法示例。


在下文中一共展示了GestureRecognitionPipeline::getTrainingResults方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: train

bool train( CommandLineParser &parser ){

    infoLog << "Training regression model..." << endl;

    string trainDatasetFilename = "";
    string modelFilename = "";

    //Get the filename
    if( !parser.get("filename",trainDatasetFilename) ){
        errorLog << "Failed to parse filename from command line! You can set the filename using the -f." << endl;
        printHelp();
        return false;
    }

    //Get the model filename
    parser.get("model-filename",modelFilename);

    //Load the training data to train the model
    ClassificationData trainingData;

    infoLog << "- Loading Training Data..." << endl;
    if( !trainingData.load( trainDatasetFilename ) ){
        errorLog << "Failed to load training data!\n";
        return false;
    }

    const unsigned int N = trainingData.getNumDimensions();
    const unsigned int K = trainingData.getNumClasses();
    infoLog << "- Num training samples: " << trainingData.getNumSamples() << endl;
    infoLog << "- Num input dimensions: " << N << endl;
    infoLog << "- Num classes: " << K << endl;
    
    float learningRate = 0;
    float minChange = 0;
    unsigned int maxEpoch = 0;
    unsigned int batchSize = 0;

    parser.get( "learning-rate", learningRate );
    parser.get( "min-change", minChange );
    parser.get( "max-epoch", maxEpoch );
    parser.get( "batch-size", batchSize );

    infoLog << "Softmax settings: learning-rate: " << learningRate << " min-change: " << minChange << " max-epoch: " << maxEpoch << " batch-size: " << batchSize << endl;

    //Create a new softmax instance
    bool enableScaling = true;
    Softmax classifier(enableScaling,learningRate,minChange,maxEpoch,batchSize);

    //Create a new pipeline that will hold the classifier
    GestureRecognitionPipeline pipeline;

    //Add the classifier to the pipeline
    pipeline << classifier;

    infoLog << "- Training model...\n";

    //Train the classifier
    if( !pipeline.train( trainingData ) ){
        errorLog << "Failed to train model!" << endl;
        return false;
    }

    infoLog << "- Model trained!" << endl;

    infoLog << "- Saving model to: " << modelFilename << endl;

    //Save the pipeline
    if( pipeline.save( modelFilename ) ){
        infoLog << "- Model saved." << endl;
    }else warningLog << "Failed to save model to file: " << modelFilename << endl;

    infoLog << "- TrainingTime: " << pipeline.getTrainingTime() << endl;
    
    string logFilename = "";
    if( parser.get( "log-filename", logFilename ) && logFilename.length() > 0 ){
      infoLog << "Writing training log to: " << logFilename << endl;

      fstream logFile( logFilename.c_str(), fstream::out );

      if( !logFile.is_open() ){
        errorLog << "Failed to open training log file: " << logFilename << endl;
        return false;
      }

      Vector< TrainingResult > trainingResults = pipeline.getTrainingResults();

      for(UINT i=0; i<trainingResults.getSize(); i++){
        logFile << trainingResults[i].getTrainingIteration() << "\t" << trainingResults[i].getAccuracy() << endl;
      }

      logFile.close();
    }

    return true;
}
开发者ID:sgrignard,项目名称:grt,代码行数:95,代码来源:grt-softmax-tool.cpp


注:本文中的GestureRecognitionPipeline::getTrainingResults方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。