当前位置: 首页>>代码示例>>C++>>正文


C++ GenericChunkedArray::resize方法代码示例

本文整理汇总了C++中GenericChunkedArray::resize方法的典型用法代码示例。如果您正苦于以下问题:C++ GenericChunkedArray::resize方法的具体用法?C++ GenericChunkedArray::resize怎么用?C++ GenericChunkedArray::resize使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GenericChunkedArray的用法示例。


在下文中一共展示了GenericChunkedArray::resize方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: OrientNormals

int ccFastMarchingForNormsDirection::OrientNormals(	ccPointCloud* cloud,
													unsigned char octreeLevel,
													ccProgressDialog* progressCb)
{
	if (!cloud || !cloud->normals())
	{
		ccLog::Warning(QString("[orientNormalsWithFM] Cloud '%1' is invalid (or cloud has no normals)").arg(cloud->getName()));
		assert(false);
	}
	NormsIndexesTableType* theNorms = cloud->normals();

	unsigned numberOfPoints = cloud->size();
	if (numberOfPoints == 0)
		return -1;

	//we need the octree
	if (!cloud->getOctree())
	{
		if (!cloud->computeOctree(progressCb))
		{
			ccLog::Warning(QString("[orientNormalsWithFM] Could not compute octree on cloud '%1'").arg(cloud->getName()));
			return false;
		}
	}
	ccOctree::Shared octree = cloud->getOctree();
	assert(octree);

	//temporary SF
	bool sfWasDisplayed = cloud->sfShown();
	int oldSfIdx = cloud->getCurrentDisplayedScalarFieldIndex();
	int sfIdx = cloud->getScalarFieldIndexByName("FM_Propagation");
	if (sfIdx < 0)
		sfIdx = cloud->addScalarField("FM_Propagation");
	if (sfIdx >= 0)
	{
		cloud->setCurrentScalarField(sfIdx);
	}
	else
	{
		ccLog::Warning("[orientNormalsWithFM] Couldn't create temporary scalar field! Not enough memory?");
		return -3;
	}

	if (!cloud->enableScalarField())
	{
		ccLog::Warning("[orientNormalsWithFM] Couldn't enable temporary scalar field! Not enough memory?");
		cloud->deleteScalarField(sfIdx);
		cloud->setCurrentScalarField(oldSfIdx);
		return -4;
	}

	//flags indicating if each point has been processed or not
	GenericChunkedArray<1,unsigned char>* resolved = new GenericChunkedArray<1,unsigned char>();
	if (!resolved->resize(numberOfPoints,true,0)) //defaultResolvedValue = 0
	{
		ccLog::Warning("[orientNormalsWithFM] Not enough memory!");
		cloud->deleteScalarField(sfIdx);
		cloud->setCurrentScalarField(oldSfIdx);
		resolved->release();
		return -5;
	}

	//Fast Marching propagation
	ccFastMarchingForNormsDirection fm;

	int result = fm.init(cloud, theNorms, octree.data(), octreeLevel);
	if (result < 0)
	{
		ccLog::Error("[orientNormalsWithFM] Something went wrong during initialization...");
		cloud->deleteScalarField(sfIdx);
		cloud->setCurrentScalarField(oldSfIdx);
		resolved->release();
		return -6;
	}

	//progress notification
	if (progressCb)
	{
		if (progressCb->textCanBeEdited())
		{
			progressCb->setMethodTitle("Norms direction");
			progressCb->setInfo(qPrintable(QString("Octree level: %1\nPoints: %2").arg(octreeLevel).arg(numberOfPoints)));
		}
		progressCb->update(0);
		progressCb->start();
	}

	const int octreeWidth = (1<<octreeLevel)-1;

	//enable 26-connectivity
	//fm.setExtendedConnectivity(true);

	//while non-processed points remain...
	unsigned resolvedPoints = 0;
	int lastProcessedPoint = -1;
	bool success = true;
	while (success)
	{
		//find the next non-processed point
		do
//.........这里部分代码省略.........
开发者ID:3660628,项目名称:trunk,代码行数:101,代码来源:ccFastMarchingForNormsDirection.cpp

示例2: ResolveNormsDirectionByFrontPropagation

int ccFastMarchingForNormsDirection::ResolveNormsDirectionByFrontPropagation(	ccPointCloud* theCloud,
																				NormsIndexesTableType* theNorms,
																				uchar octreeLevel,
																				CCLib::GenericProgressCallback* progressCb,
																				CCLib::DgmOctree* inputOctree)
{
	assert(theCloud);

	unsigned numberOfPoints = theCloud->size();
	if (numberOfPoints == 0)
		return -1;

	//we compute the octree if none is provided
	CCLib::DgmOctree* theOctree = inputOctree;
	if (!theOctree)
	{
		theOctree = new CCLib::DgmOctree(theCloud);
		if (theOctree->build(progressCb)<1)
		{
			delete theOctree;
			return -2;
		}
	}

	//temporary SF
	int oldSfIdx = theCloud->getCurrentDisplayedScalarFieldIndex();
	int sfIdx = theCloud->getScalarFieldIndexByName("FM_Propagation");
	if (sfIdx < 0)
		sfIdx = theCloud->addScalarField("FM_Propagation");
	if (sfIdx >= 0)
	{
		theCloud->setCurrentScalarField(sfIdx);
	}
	else
	{
		ccLog::Warning("[ccFastMarchingForNormsDirection] Couldn't create temporary scalar field! Not enough memory?");
		if (!inputOctree)
			delete theOctree;
		return -3;
	}

	if (!theCloud->enableScalarField())
	{
		ccLog::Warning("[ccFastMarchingForNormsDirection] Couldn't enable temporary scalar field! Not enough memory?");
		theCloud->deleteScalarField(sfIdx);
		theCloud->setCurrentScalarField(oldSfIdx);
		if (!inputOctree)
			delete theOctree;
		return -4;
	}

	//flags indicating if each point has been processed or not
	GenericChunkedArray<1,uchar>* resolved = new GenericChunkedArray<1,uchar>();
	if (!resolved->resize(numberOfPoints,true,0)) //defaultResolvedValue = 0
	{
		ccLog::Warning("[ccFastMarchingForNormsDirection] Not enough memory!");
		theCloud->deleteScalarField(sfIdx);
		theCloud->setCurrentScalarField(oldSfIdx);
		if (!inputOctree)
			delete theOctree;
		resolved->release();
		return -5;
	}

	//Fast Marching propagation
	ccFastMarchingForNormsDirection fm;

	int result = fm.init(theCloud,theNorms,theOctree,octreeLevel);
	if (result < 0)
	{
		ccLog::Error("[ccFastMarchingForNormsDirection] Something went wrong during initialization...");
		theCloud->deleteScalarField(sfIdx);
		theCloud->setCurrentScalarField(oldSfIdx);
		resolved->release();
		if (!inputOctree)
			delete theOctree;
		return -6;
	}

	//progress notification
	if (progressCb)
	{
		progressCb->reset();
		progressCb->setMethodTitle("Norms direction");
		progressCb->setInfo(qPrintable(QString("Octree level: %1\nPoints: %2").arg(octreeLevel).arg(numberOfPoints)));
		progressCb->start();
	}

	const int octreeWidth = (1<<octreeLevel)-1;

	//enable 26-connectivity
	//fm.setExtendedConnectivity(true);

	//while non-processed points remain...
	unsigned resolvedPoints = 0;
	int lastProcessedPoint = -1;
	while (true)
	{
		//find the next non-processed point
		do
//.........这里部分代码省略.........
开发者ID:cnyinfei,项目名称:trunk,代码行数:101,代码来源:ccFastMarchingForNormsDirection.cpp

示例3: projectColors

ccGBLSensor::ColorGrid* ccGBLSensor::projectColors(	CCLib::GenericCloud* cloud,
													const ColorGrid& theColors) const
{
	if (!cloud || !theColors.isAllocated())
		return 0;

	unsigned gridSize = m_depthBuffer.height*m_depthBuffer.width;
	if (gridSize == 0)
		return 0; //depth buffer empty or not initialized!

	//number of points per cell of the depth map
	std::vector<size_t> pointPerDMCell;
	try
	{
		pointPerDMCell.resize(gridSize,0);
	}
	catch(std::bad_alloc)
	{
		//not enough memory
		return 0;
	}

	//temp. array for accumulation
	GenericChunkedArray<3,float>* colorAccumGrid = new GenericChunkedArray<3,float>;
	{
		float blackF[3] = {0,0,0};
		if (!colorAccumGrid->resize(gridSize,true,blackF))
			return 0; //not enough memory
	}
	
	//final array
	ColorsTableType* colorGrid = new ColorsTableType;
	{
		if (!colorGrid->resize(gridSize,true,ccColor::black.rgba))
		{
			colorAccumGrid->release();
			return 0; //not enough memory
		}
	}

	//project colors
	{
		unsigned pointCount = cloud->size();
		cloud->placeIteratorAtBegining();
		{
			for (unsigned i=0; i<pointCount; ++i)
			{
				const CCVector3 *P = cloud->getNextPoint();
				CCVector2 Q;
				PointCoordinateType depth;
				projectPoint(*P,Q,depth,m_activeIndex);

				unsigned x,y;
				if (convertToDepthMapCoords(Q.x,Q.y,x,y))
				{
					unsigned index = y*m_depthBuffer.width+x;
				
					//accumulate color
					const colorType* srcC = theColors.getValue(i);
					float* destC = colorAccumGrid->getValue(index);

					destC[0] += srcC[0];
					destC[1] += srcC[1];
					destC[2] += srcC[2];
					++pointPerDMCell[index];
				}
				else
				{
					//shouldn't happen!
					assert(false);
				}
			}
		}
	}

	//normalize
	{
		for (unsigned i=0; i<gridSize; ++i)
		{
			if (pointPerDMCell[i] != 0)
			{
				const float* srcC = colorAccumGrid->getValue(i);
				colorType* destC = colorGrid->getValue(i);
				destC[0] = static_cast<colorType>( srcC[0] / pointPerDMCell[i] );
				destC[1] = static_cast<colorType>( srcC[1] / pointPerDMCell[i] );
				destC[2] = static_cast<colorType>( srcC[2] / pointPerDMCell[i] );
			}
		}
	}

	colorAccumGrid->release();

	return colorGrid;
}
开发者ID:cnyinfei,项目名称:trunk,代码行数:94,代码来源:ccGBLSensor.cpp

示例4: ResolveNormsDirectionByFrontPropagation

int ccFastMarchingForNormsDirection::ResolveNormsDirectionByFrontPropagation(ccPointCloud* theCloud,
                                                                                NormsIndexesTableType* theNorms,
                                                                                uchar octreeLevel,
                                                                                CCLib::GenericProgressCallback* progressCb,
                                                                                CCLib::DgmOctree* _theOctree)
{
    assert(theCloud);

	int i,numberOfPoints = theCloud->size();
	if (numberOfPoints<1)
        return -2;

	//on calcule l'octree si besoin
	CCLib::DgmOctree* theOctree = _theOctree;
	if (!theOctree)
	{
		theOctree = new CCLib::DgmOctree(theCloud);
		if (theOctree->build(progressCb)<1)
		{
			delete theOctree;
			return -3;
		}
	}

	//temporaire
	int oldSfIdx = theCloud->getCurrentInScalarFieldIndex();
	int sfIdx = theCloud->getScalarFieldIndexByName("FM_Propagation");
	if (sfIdx<0)
		sfIdx=theCloud->addScalarField("FM_Propagation",true);
	if (sfIdx>=0)
		theCloud->setCurrentScalarField(sfIdx);
	else
	{
		ccConsole::Warning("[ccFastMarchingForNormsDirection] Couldn't create temporary scalar field! Not enough memory?");
		if (!_theOctree)
			delete theOctree;
		return -5;
	}
	theCloud->enableScalarField();

	//vecteur indiquant si le point a été traité
	GenericChunkedArray<1,uchar>* resolved = new GenericChunkedArray<1,uchar>();
	resolved->resize(numberOfPoints,true,0); //defaultResolvedValue=0

	//on va faire la propagation avec l'algorithme de Fast Marching
	ccFastMarchingForNormsDirection* fm = new ccFastMarchingForNormsDirection();

	int result = fm->init(theCloud,theNorms,theOctree,octreeLevel);
	if (result<0)
	{
		ccConsole::Error("[ccFastMarchingForNormsDirection] Something went wrong during initialization ...\n");
		theCloud->deleteScalarField(sfIdx);
		theCloud->setCurrentScalarField(oldSfIdx);
		if (!_theOctree)
			delete theOctree;
		delete fm;
		return -4;
	}

	int resolvedPoints=0;
	if (progressCb)
	{
		progressCb->reset();
		progressCb->setMethodTitle("Norms direction");
		char buffer[256];
		sprintf(buffer,"Octree level: %i\nNumber of points: %i",octreeLevel,numberOfPoints);
		progressCb->setInfo(buffer);
		progressCb->start();
	}

	int octreeLength = (1<<octreeLevel)-1;

	while (true)
	{
		//on cherche un point non encore traité
		resolved->placeIteratorAtBegining();
		for (i=0;i<numberOfPoints;++i)
		{
			if (resolved->getCurrentValue()==0)
				break;
			resolved->forwardIterator();
		}

		//si tous les points ont été traités, on peut arréter !
		if (i==numberOfPoints)
			break;

		//on lance la propagation à partir du point trouvé
		const CCVector3 *thePoint = theCloud->getPoint(i);

		int pos[3];
		theOctree->getTheCellPosWhichIncludesThePoint(thePoint,pos,octreeLevel);
		//clipping (important !)
		pos[0] = std::min(octreeLength,pos[0]);
		pos[1] = std::min(octreeLength,pos[1]);
		pos[2] = std::min(octreeLength,pos[2]);
		fm->setSeedCell(pos);

		int result = fm->propagate();

//.........这里部分代码省略.........
开发者ID:dshean,项目名称:trunk,代码行数:101,代码来源:ccFastMarchingForNormsDirection.cpp

示例5: laplacianSmooth

bool ccGenericMesh::laplacianSmooth(unsigned nbIteration, float factor, CCLib::GenericProgressCallback* progressCb/*=0*/)
{
    if (!m_associatedCloud)
        return false;

    //vertices
    unsigned vertCount = m_associatedCloud->size();
    //triangles
    unsigned faceCount = size();
    if (!vertCount || !faceCount)
        return false;

    GenericChunkedArray<3,PointCoordinateType>* verticesDisplacement = new GenericChunkedArray<3,PointCoordinateType>;
    if (!verticesDisplacement->resize(vertCount))
    {
        //not enough memory
        verticesDisplacement->release();
        return false;
    }

    //compute the number of edges to which belong each vertex
    unsigned* edgesCount = new unsigned[vertCount];
    if (!edgesCount)
    {
        //not enough memory
        verticesDisplacement->release();
        return false;
    }
    memset(edgesCount, 0, sizeof(unsigned)*vertCount);
    placeIteratorAtBegining();
    for(unsigned j=0; j<faceCount; j++)
    {
        const CCLib::TriangleSummitsIndexes* tri = getNextTriangleIndexes();
        edgesCount[tri->i1]+=2;
        edgesCount[tri->i2]+=2;
        edgesCount[tri->i3]+=2;
    }

    //progress dialog
    CCLib::NormalizedProgress* nProgress = 0;
    if (progressCb)
    {
        unsigned totalSteps = nbIteration;
        nProgress = new CCLib::NormalizedProgress(progressCb,totalSteps);
        progressCb->setMethodTitle("Laplacian smooth");
        progressCb->setInfo(qPrintable(QString("Iterations: %1\nVertices: %2\nFaces: %3").arg(nbIteration).arg(vertCount).arg(faceCount)));
        progressCb->start();
    }

    //repeat Laplacian smoothing iterations
    for(unsigned iter = 0; iter < nbIteration; iter++)
    {
        verticesDisplacement->fill(0);

        //for each triangle
        placeIteratorAtBegining();
        for(unsigned j=0; j<faceCount; j++)
        {
            const CCLib::TriangleSummitsIndexes* tri = getNextTriangleIndexes();

            const CCVector3* A = m_associatedCloud->getPoint(tri->i1);
            const CCVector3* B = m_associatedCloud->getPoint(tri->i2);
            const CCVector3* C = m_associatedCloud->getPoint(tri->i3);

            CCVector3 dAB = (*B-*A);
            CCVector3 dAC = (*C-*A);
            CCVector3 dBC = (*C-*B);

            CCVector3* dA = (CCVector3*)verticesDisplacement->getValue(tri->i1);
            (*dA) += dAB+dAC;
            CCVector3* dB = (CCVector3*)verticesDisplacement->getValue(tri->i2);
            (*dB) += dBC-dAB;
            CCVector3* dC = (CCVector3*)verticesDisplacement->getValue(tri->i3);
            (*dC) -= dAC+dBC;
        }

        if (nProgress && !nProgress->oneStep())
        {
            //cancelled by user
            break;
        }

        //apply displacement
        verticesDisplacement->placeIteratorAtBegining();
        for (unsigned i=0; i<vertCount; i++)
        {
            //this is a "persistent" pointer and we know what type of cloud is behind ;)
            CCVector3* P = const_cast<CCVector3*>(m_associatedCloud->getPointPersistentPtr(i));
            const CCVector3* d = (const CCVector3*)verticesDisplacement->getValue(i);
            (*P) += (*d)*(factor/(PointCoordinateType)edgesCount[i]);
        }
    }

    m_associatedCloud->updateModificationTime();

    if (hasNormals())
        computeNormals();

    if (verticesDisplacement)
        verticesDisplacement->release();
//.........这里部分代码省略.........
开发者ID:eimix,项目名称:trunk,代码行数:101,代码来源:ccGenericMesh.cpp

示例6: resampleCloudSpatially

ReferenceCloud* CloudSamplingTools::resampleCloudSpatially(GenericIndexedCloudPersist* theCloud,
															PointCoordinateType minDistance,
															DgmOctree* theOctree/*=0*/,
															GenericProgressCallback* progressCb/*=0*/)
{
	assert(theCloud);
    unsigned cloudSize = theCloud->size();

    DgmOctree *_theOctree=theOctree;
	if (!_theOctree)
	{
		_theOctree = new DgmOctree(theCloud);
		if (_theOctree->build()<(int)cloudSize)
		{
			delete _theOctree;
			return 0;
		}
	}

    ReferenceCloud* sampledCloud = new ReferenceCloud(theCloud);
    if (!sampledCloud->reserve(cloudSize))
	{
		if (!theOctree)
			delete _theOctree;
		return 0;
	}

	GenericChunkedArray<1,bool>* markers = new GenericChunkedArray<1,bool>(); //DGM: upgraded from vector, as this can be quite huge!
    if (!markers->resize(cloudSize,true,true))
	{
		markers->release();
		if (!theOctree)
			delete _theOctree;
		delete sampledCloud;
		return 0;
	}

	NormalizedProgress* normProgress=0;
    if (progressCb)
    {
        progressCb->setInfo("Spatial resampling");
		normProgress = new NormalizedProgress(progressCb,cloudSize);
        progressCb->reset();
        progressCb->start();
    }

	//for each point in the cloud that is still 'marked', we look
	//for its neighbors and remove their own marks
    DgmOctree::NearestNeighboursSphericalSearchStruct nss;
    nss.level = _theOctree->findBestLevelForAGivenNeighbourhoodSizeExtraction(minDistance);
	
	markers->placeIteratorAtBegining();
    for (unsigned i=0; i<cloudSize; i++, markers->forwardIterator())
    {
		//progress indicator
		if (normProgress && !normProgress->oneStep())
		{
			//cancel process
			delete sampledCloud;
			sampledCloud = 0;
			break;
		}

		//no mark? we skip this point
		if (!markers->getCurrentValue())
            continue;

		//init neighbor search structure
		theCloud->getPoint(i,nss.queryPoint);
		bool inbounds = false;
		_theOctree->getTheCellPosWhichIncludesThePoint(&nss.queryPoint, nss.cellPos, nss.level, inbounds);
		nss.truncatedCellCode = (inbounds ? _theOctree->generateTruncatedCellCode(nss.cellPos, nss.level) : DgmOctree::INVALID_CELL_CODE);
		_theOctree->computeCellCenter(nss.cellPos, nss.level, nss.cellCenter);

        //add the points that lie in the same cell (faster)
		{
			ReferenceCloud* Y = _theOctree->getPointsInCell(nss.truncatedCellCode, nss.level, true);
			unsigned count = Y->size();
			try
			{
				nss.pointsInNeighbourhood.resize(count);
			}
			catch (std::bad_alloc) //out of memory
			{
				//stop process
				delete sampledCloud;
				sampledCloud = 0;
				break;
			}

			unsigned realCount = 0;
			DgmOctree::NeighboursSet::iterator it = nss.pointsInNeighbourhood.begin();
			for (unsigned j=0; j<count; ++j)
			{
				unsigned index = Y->getPointGlobalIndex(j);
				if (index != i && markers->getValue(index)) //no need to add the point itself and those already flagged off
				{
					it->point = Y->getPointPersistentPtr(j);
					it->pointIndex = index;
					++it;
//.........这里部分代码省略.........
开发者ID:uplusplus,项目名称:cloudcompare,代码行数:101,代码来源:CloudSamplingTools.cpp

示例7: resampleCloudSpatially

ReferenceCloud* CloudSamplingTools::resampleCloudSpatially(GenericIndexedCloudPersist* inputCloud,
															PointCoordinateType minDistance,
															const SFModulationParams& modParams,
															DgmOctree* inputOctree/*=0*/,
															GenericProgressCallback* progressCb/*=0*/)
{
	assert(inputCloud);
    unsigned cloudSize = inputCloud->size();

    DgmOctree* octree = inputOctree;
	if (!octree)
	{
		octree = new DgmOctree(inputCloud);
		if (octree->build() < static_cast<int>(cloudSize))
		{
			delete octree;
			return 0;
		}
	}
	assert(octree && octree->associatedCloud() == inputCloud);

	//output cloud
	ReferenceCloud* sampledCloud = new ReferenceCloud(inputCloud);
	const unsigned c_reserveStep = 65536;
	if (!sampledCloud->reserve(std::min(cloudSize,c_reserveStep)))
	{
		if (!inputOctree)
			delete octree;
		return 0;
	}

	GenericChunkedArray<1,char>* markers = new GenericChunkedArray<1,char>(); //DGM: upgraded from vector, as this can be quite huge!
	if (!markers->resize(cloudSize,true,1)) //true by default
	{
		markers->release();
		if (!inputOctree)
			delete octree;
		delete sampledCloud;
		return 0;
	}

	//best octree level (there may be several of them if we use parameter modulation)
	std::vector<unsigned char> bestOctreeLevel;
	bool modParamsEnabled = modParams.enabled;
	ScalarType sfMin = 0, sfMax = 0;
	try
	{
		if (modParams.enabled)
		{
			//compute min and max sf values
			ScalarFieldTools::computeScalarFieldExtremas(inputCloud,sfMin,sfMax);

			if (!ScalarField::ValidValue(sfMin))
			{
				//all SF values are NAN?!
				modParamsEnabled = false;
			}
			else
			{
				//compute min and max 'best' levels
				PointCoordinateType dist0 = static_cast<PointCoordinateType>(sfMin * modParams.a + modParams.b);
				PointCoordinateType dist1 = static_cast<PointCoordinateType>(sfMax * modParams.a + modParams.b);
				unsigned char level0 = octree->findBestLevelForAGivenNeighbourhoodSizeExtraction(dist0);
				unsigned char level1 = octree->findBestLevelForAGivenNeighbourhoodSizeExtraction(dist1);

				bestOctreeLevel.push_back(level0);
				if (level1 != level0)
				{
					//add intermediate levels if necessary
					size_t levelCount = (level1 < level0 ? level0-level1 : level1-level0) + 1;
					assert(levelCount != 0);
					
					for (size_t i=1; i<levelCount-1; ++i) //we already know level0 and level1!
					{
						ScalarType sfVal = sfMin + i*((sfMax-sfMin)/levelCount);
						PointCoordinateType dist = static_cast<PointCoordinateType>(sfVal * modParams.a + modParams.b);
						unsigned char level = octree->findBestLevelForAGivenNeighbourhoodSizeExtraction(dist);
						bestOctreeLevel.push_back(level);
					}
				}
				bestOctreeLevel.push_back(level1);
			}
		}
		else
		{
			unsigned char defaultLevel = octree->findBestLevelForAGivenNeighbourhoodSizeExtraction(minDistance);
			bestOctreeLevel.push_back(defaultLevel);
		}
	}
	catch (const std::bad_alloc&)
	{
		//not enough memory
		markers->release();
		if (!inputOctree)
		{
			delete octree;
		}
		delete sampledCloud;
		return 0;
	}
//.........这里部分代码省略.........
开发者ID:coolshahabaz,项目名称:trunk,代码行数:101,代码来源:CloudSamplingTools.cpp

示例8: ExtractPlanarFacets

int FastMarchingForFacetExtraction::ExtractPlanarFacets(	ccPointCloud* theCloud,
															unsigned char octreeLevel,
															ScalarType maxError,
															CCLib::DistanceComputationTools::ERROR_MEASURES errorMeasure,
															bool useRetroProjectionError/*=true*/,
															CCLib::GenericProgressCallback* progressCb/*=0*/,
															CCLib::DgmOctree* _theOctree/*=0*/)
{
	assert(theCloud);

	unsigned numberOfPoints = theCloud->size();
	if (numberOfPoints == 0)
		return -1;

	if (!theCloud->getCurrentOutScalarField())
		return -2;

	if (progressCb)
	{
		//just spawn the dialog so that we can see the
		//octree computation (in case the CPU charge prevents
		//the dialog from being shown)
		progressCb->start();
		QApplication::processEvents();
	}

	//we compute the octree if none is provided
	CCLib::DgmOctree* theOctree = _theOctree;
	if (!theOctree)
	{
		theOctree = new CCLib::DgmOctree(theCloud);
		if (theOctree->build(progressCb)<1)
		{
			delete theOctree;
			return -3;
		}
	}

	if (progressCb)
	{
		if (progressCb->textCanBeEdited())
		{
			progressCb->setMethodTitle("Fast Marching for facets extraction");
			progressCb->setInfo("Initializing...");
		}
		progressCb->start();
		QApplication::processEvents();
	}
	if (!theCloud->enableScalarField())
	{
		ccLog::Warning("[FastMarchingForFacetExtraction] Couldn't enable scalar field! Not enough memory?");
		if (!_theOctree)
			delete theOctree;
		return -4;
	}

	//raz SF values
	{
		for (unsigned i=0; i!=theCloud->size(); ++i)
			theCloud->setPointScalarValue(i,0);
	}

	//flags indicating if each point has been processed or not
	GenericChunkedArray<1,unsigned char>* flags = new GenericChunkedArray<1,unsigned char>();
	if (!flags->resize(numberOfPoints,true,0)) //defaultFlagValue = 0
	{
		ccLog::Warning("[FastMarchingForFacetExtraction] Not enough memory!");
		if (!_theOctree)
			delete theOctree;
		flags->release();
		return -5;
	}

	//Fast Marching propagation
	FastMarchingForFacetExtraction fm;

	int result = fm.init(	theCloud,
							theOctree,
							octreeLevel,
							maxError,
							errorMeasure,
							useRetroProjectionError,
							progressCb);
	if (result < 0)
	{
		ccLog::Error("[FastMarchingForFacetExtraction] Something went wrong during initialization...");
		flags->release();
		if (!_theOctree)
			delete theOctree;
		return -6;
	}

	//progress notification
	if (progressCb)
	{
		progressCb->update(0);
		if (progressCb->textCanBeEdited())
		{
			progressCb->setMethodTitle("Facets extraction");
			progressCb->setInfo(qPrintable(QString("Octree level: %1\nPoints: %2").arg(octreeLevel).arg(numberOfPoints)));
//.........这里部分代码省略.........
开发者ID:3660628,项目名称:trunk,代码行数:101,代码来源:fastMarchingForFacetExtraction.cpp


注:本文中的GenericChunkedArray::resize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。