当前位置: 首页>>代码示例>>C++>>正文


C++ GenericChunkedArray::getValue方法代码示例

本文整理汇总了C++中GenericChunkedArray::getValue方法的典型用法代码示例。如果您正苦于以下问题:C++ GenericChunkedArray::getValue方法的具体用法?C++ GenericChunkedArray::getValue怎么用?C++ GenericChunkedArray::getValue使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GenericChunkedArray的用法示例。


在下文中一共展示了GenericChunkedArray::getValue方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: updateFlagsTable

unsigned FastMarchingForFacetExtraction::updateFlagsTable(	ccGenericPointCloud* theCloud,
																GenericChunkedArray<1,unsigned char> &flags,
																unsigned facetIndex)
{
	if (!m_initialized || !m_currentFacetPoints)
		return 0;

	unsigned pointCount = m_currentFacetPoints->size();
	for (unsigned k=0; k<pointCount; ++k)
	{
		unsigned index = m_currentFacetPoints->getPointGlobalIndex(k);
		flags.setValue(index,1);

		theCloud->setPointScalarValue(index,static_cast<ScalarType>(facetIndex));
	}

	if (m_currentFacetPoints)
		m_currentFacetPoints->clear(false);

	/*for (size_t i=0; i<m_activeCells.size(); ++i)
	{
		//we remove the processed cell so as to be sure not to consider them again!
		CCLib::FastMarching::Cell* cell = m_theGrid[m_activeCells[i]];
		m_theGrid[m_activeCells[i]] = 0;
		if (cell)
			delete cell;
	}
	//*/
	
	//unsigned pointCount = 0;
	CCLib::ReferenceCloud Yk(m_octree->associatedCloud());
	for (size_t i=0; i<m_activeCells.size(); ++i)
	{
		PlanarCell* aCell = static_cast<PlanarCell*>(m_theGrid[m_activeCells[i]]);
		if (!m_octree->getPointsInCell(aCell->cellCode,m_gridLevel,&Yk,true))
			continue;

		for (unsigned k=0; k<Yk.size(); ++k)
		{
			unsigned index = Yk.getPointGlobalIndex(k);
			assert(flags.getValue(index) == 1);
			//flags.setValue(index,1);			
			//++pointCount;
		}

		m_theGrid[m_activeCells[i]] = 0;
		delete aCell;
	}

	return pointCount;
}
开发者ID:3660628,项目名称:trunk,代码行数:51,代码来源:fastMarchingForFacetExtraction.cpp

示例2: samplePoints

ccPointCloud* ccGenericMesh::samplePoints(	bool densityBased,
											double samplingParameter,
											bool withNormals,
											bool withRGB,
											bool withTexture,
											CCLib::GenericProgressCallback* pDlg/*=0*/)
{
	bool withFeatures = (withNormals || withRGB || withTexture);

	GenericChunkedArray<1,unsigned>* triIndices = (withFeatures ? new GenericChunkedArray<1,unsigned> : 0);

	CCLib::SimpleCloud* sampledCloud = 0;
	if (densityBased)
	{
		sampledCloud = CCLib::MeshSamplingTools::samplePointsOnMesh(this,samplingParameter,pDlg,triIndices);
	}
	else
	{
		sampledCloud = CCLib::MeshSamplingTools::samplePointsOnMesh(this,static_cast<unsigned>(samplingParameter),pDlg,triIndices);
	}

	//convert to real point cloud
	ccPointCloud* cloud = 0;
	
	if (sampledCloud)
	{
		cloud = ccPointCloud::From(sampledCloud);
		delete sampledCloud;
		sampledCloud = 0;
	}

	if (!cloud)
	{
		if (triIndices)
			triIndices->release();

		ccLog::Warning("[ccGenericMesh::samplePoints] Not enough memory!");
		return 0;
	}

	if (withFeatures && triIndices && triIndices->currentSize() >= cloud->size())
	{
		//generate normals
		if (withNormals && hasNormals())
		{
			if (cloud->reserveTheNormsTable())
			{
				for (unsigned i=0; i<cloud->size(); ++i)
				{
					unsigned triIndex = triIndices->getValue(i);
					const CCVector3* P = cloud->getPoint(i);

					CCVector3 N(0,0,1);
					interpolateNormals(triIndex,*P,N);
					cloud->addNorm(N);
				}

				cloud->showNormals(true);
			}
			else
			{
				ccLog::Warning("[ccGenericMesh::samplePoints] Failed to interpolate normals (not enough memory?)");
			}
		}

		//generate colors
		if (withTexture && hasMaterials())
		{
			if (cloud->reserveTheRGBTable())
			{
				for (unsigned i=0; i<cloud->size(); ++i)
				{
					unsigned triIndex = triIndices->getValue(i);
					const CCVector3* P = cloud->getPoint(i);

					colorType C[3]={MAX_COLOR_COMP,MAX_COLOR_COMP,MAX_COLOR_COMP};
					getColorFromMaterial(triIndex,*P,C,withRGB);
					cloud->addRGBColor(C);
				}

				cloud->showColors(true);
			}
			else
			{
				ccLog::Warning("[ccGenericMesh::samplePoints] Failed to export texture colors (not enough memory?)");
			}
		}
		else if (withRGB && hasColors())
		{
			if (cloud->reserveTheRGBTable())
			{
				for (unsigned i=0; i<cloud->size(); ++i)
				{
					unsigned triIndex = triIndices->getValue(i);
					const CCVector3* P = cloud->getPoint(i);

					colorType C[3] = { MAX_COLOR_COMP, MAX_COLOR_COMP, MAX_COLOR_COMP };
					interpolateColors(triIndex,*P,C);
					cloud->addRGBColor(C);
				}
//.........这里部分代码省略.........
开发者ID:Aerochip7,项目名称:trunk,代码行数:101,代码来源:ccGenericMesh.cpp

示例3: OrientNormals


//.........这里部分代码省略.........
	{
		ccLog::Error("[orientNormalsWithFM] Something went wrong during initialization...");
		cloud->deleteScalarField(sfIdx);
		cloud->setCurrentScalarField(oldSfIdx);
		resolved->release();
		return -6;
	}

	//progress notification
	if (progressCb)
	{
		if (progressCb->textCanBeEdited())
		{
			progressCb->setMethodTitle("Norms direction");
			progressCb->setInfo(qPrintable(QString("Octree level: %1\nPoints: %2").arg(octreeLevel).arg(numberOfPoints)));
		}
		progressCb->update(0);
		progressCb->start();
	}

	const int octreeWidth = (1<<octreeLevel)-1;

	//enable 26-connectivity
	//fm.setExtendedConnectivity(true);

	//while non-processed points remain...
	unsigned resolvedPoints = 0;
	int lastProcessedPoint = -1;
	bool success = true;
	while (success)
	{
		//find the next non-processed point
		do
		{
			++lastProcessedPoint;
		}
		while (lastProcessedPoint < static_cast<int>(numberOfPoints) && resolved->getValue(lastProcessedPoint) != 0);

		//all points have been processed? Then we can stop.
		if (lastProcessedPoint == static_cast<int>(numberOfPoints))
			break;

		//we start the propagation from this point
		//its corresponding cell in fact ;)
		const CCVector3 *thePoint = cloud->getPoint(lastProcessedPoint);
		Tuple3i cellPos;
		octree->getTheCellPosWhichIncludesThePoint(thePoint, cellPos, octreeLevel);

		//clipping (in case the octree is not 'complete')
		cellPos.x = std::min(octreeWidth, cellPos.x);
		cellPos.y = std::min(octreeWidth, cellPos.y);
		cellPos.z = std::min(octreeWidth, cellPos.z);

		//set corresponding FM cell as 'seed'
		fm.setSeedCell(cellPos);

		//launch propagation
		int propagationResult = fm.propagate();

		//if it's a success
		if (propagationResult >= 0)
		{
			//compute the number of points processed during this pass
			unsigned count = fm.updateResolvedTable(cloud,*resolved,theNorms);

			if (count != 0)
			{
				resolvedPoints += count;
				if (progressCb)
					progressCb->update(static_cast<float>(resolvedPoints)/static_cast<float>(numberOfPoints)*100.0f);
			}

			fm.cleanLastPropagation();
		}
		else
		{
			ccLog::Error("An error occurred during front propagation! Process cancelled...");
			success = false;
		}
	}

	if (progressCb)
		progressCb->stop();

	resolved->release();
	resolved = 0;

	cloud->showNormals(true);
#ifdef QT_DEBUG
	cloud->setCurrentDisplayedScalarField(sfIdx);
	cloud->getCurrentDisplayedScalarField()->computeMinAndMax();
	cloud->showSF(true);
#else
	cloud->deleteScalarField(sfIdx);
	cloud->setCurrentScalarField(oldSfIdx);
	cloud->showSF(sfWasDisplayed);
#endif

	return success;
}
开发者ID:3660628,项目名称:trunk,代码行数:101,代码来源:ccFastMarchingForNormsDirection.cpp

示例4: projectColors

ccGBLSensor::ColorGrid* ccGBLSensor::projectColors(	CCLib::GenericCloud* cloud,
													const ColorGrid& theColors) const
{
	if (!cloud || !theColors.isAllocated())
		return 0;

	unsigned gridSize = m_depthBuffer.height*m_depthBuffer.width;
	if (gridSize == 0)
		return 0; //depth buffer empty or not initialized!

	//number of points per cell of the depth map
	std::vector<size_t> pointPerDMCell;
	try
	{
		pointPerDMCell.resize(gridSize,0);
	}
	catch(std::bad_alloc)
	{
		//not enough memory
		return 0;
	}

	//temp. array for accumulation
	GenericChunkedArray<3,float>* colorAccumGrid = new GenericChunkedArray<3,float>;
	{
		float blackF[3] = {0,0,0};
		if (!colorAccumGrid->resize(gridSize,true,blackF))
			return 0; //not enough memory
	}
	
	//final array
	ColorsTableType* colorGrid = new ColorsTableType;
	{
		if (!colorGrid->resize(gridSize,true,ccColor::black.rgba))
		{
			colorAccumGrid->release();
			return 0; //not enough memory
		}
	}

	//project colors
	{
		unsigned pointCount = cloud->size();
		cloud->placeIteratorAtBegining();
		{
			for (unsigned i=0; i<pointCount; ++i)
			{
				const CCVector3 *P = cloud->getNextPoint();
				CCVector2 Q;
				PointCoordinateType depth;
				projectPoint(*P,Q,depth,m_activeIndex);

				unsigned x,y;
				if (convertToDepthMapCoords(Q.x,Q.y,x,y))
				{
					unsigned index = y*m_depthBuffer.width+x;
				
					//accumulate color
					const colorType* srcC = theColors.getValue(i);
					float* destC = colorAccumGrid->getValue(index);

					destC[0] += srcC[0];
					destC[1] += srcC[1];
					destC[2] += srcC[2];
					++pointPerDMCell[index];
				}
				else
				{
					//shouldn't happen!
					assert(false);
				}
			}
		}
	}

	//normalize
	{
		for (unsigned i=0; i<gridSize; ++i)
		{
			if (pointPerDMCell[i] != 0)
			{
				const float* srcC = colorAccumGrid->getValue(i);
				colorType* destC = colorGrid->getValue(i);
				destC[0] = static_cast<colorType>( srcC[0] / pointPerDMCell[i] );
				destC[1] = static_cast<colorType>( srcC[1] / pointPerDMCell[i] );
				destC[2] = static_cast<colorType>( srcC[2] / pointPerDMCell[i] );
			}
		}
	}

	colorAccumGrid->release();

	return colorGrid;
}
开发者ID:cnyinfei,项目名称:trunk,代码行数:94,代码来源:ccGBLSensor.cpp

示例5: ResolveNormsDirectionByFrontPropagation


//.........这里部分代码省略.........
	{
		ccLog::Error("[ccFastMarchingForNormsDirection] Something went wrong during initialization...");
		theCloud->deleteScalarField(sfIdx);
		theCloud->setCurrentScalarField(oldSfIdx);
		resolved->release();
		if (!inputOctree)
			delete theOctree;
		return -6;
	}

	//progress notification
	if (progressCb)
	{
		progressCb->reset();
		progressCb->setMethodTitle("Norms direction");
		progressCb->setInfo(qPrintable(QString("Octree level: %1\nPoints: %2").arg(octreeLevel).arg(numberOfPoints)));
		progressCb->start();
	}

	const int octreeWidth = (1<<octreeLevel)-1;

	//enable 26-connectivity
	//fm.setExtendedConnectivity(true);

	//while non-processed points remain...
	unsigned resolvedPoints = 0;
	int lastProcessedPoint = -1;
	while (true)
	{
		//find the next non-processed point
		do
		{
			++lastProcessedPoint;
		}
		while (lastProcessedPoint < static_cast<int>(numberOfPoints) && resolved->getValue(lastProcessedPoint) != 0);

		//all points have been processed? Then we can stop.
		if (lastProcessedPoint == static_cast<int>(numberOfPoints))
			break;

		//we start the propagation from this point
		//its corresponding cell in fact ;)
		const CCVector3 *thePoint = theCloud->getPoint(lastProcessedPoint);
		int pos[3];
		theOctree->getTheCellPosWhichIncludesThePoint(thePoint,pos,octreeLevel);

		//clipping (in case the octree is not 'complete')
		pos[0] = std::min(octreeWidth,pos[0]);
		pos[1] = std::min(octreeWidth,pos[1]);
		pos[2] = std::min(octreeWidth,pos[2]);

		//set corresponding FM cell as 'seed'
		fm.setSeedCell(pos);

		//launch propagation
		int propagationResult = fm.propagate();

		//if it's a success
		if (propagationResult >= 0)
		{
			//compute the number of points processed during this pass
			unsigned count = fm.updateResolvedTable(theCloud,*resolved,theNorms);

			if (count != 0)
			{
				resolvedPoints += count;
				if (progressCb)
					progressCb->update(static_cast<float>(resolvedPoints)/static_cast<float>(numberOfPoints)*100.0f);
			}

			fm.cleanLastPropagation();
		}
		else
		{
			ccLog::Error("An error occurred during front propagation! Process cancelled...");
			break;
		}
	}

	if (progressCb)
		progressCb->stop();

	resolved->release();
	resolved = 0;

	if (!inputOctree)
		delete theOctree;

	theCloud->showNormals(true);
#ifdef _DEBUG
	theCloud->setCurrentDisplayedScalarField(sfIdx);
	theCloud->getCurrentDisplayedScalarField()->computeMinAndMax();
	theCloud->showSF(true);
#else
	theCloud->deleteScalarField(sfIdx);
	theCloud->setCurrentScalarField(oldSfIdx);
#endif

	return 0;
}
开发者ID:cnyinfei,项目名称:trunk,代码行数:101,代码来源:ccFastMarchingForNormsDirection.cpp

示例6: laplacianSmooth

bool ccGenericMesh::laplacianSmooth(unsigned nbIteration, float factor, CCLib::GenericProgressCallback* progressCb/*=0*/)
{
    if (!m_associatedCloud)
        return false;

    //vertices
    unsigned vertCount = m_associatedCloud->size();
    //triangles
    unsigned faceCount = size();
    if (!vertCount || !faceCount)
        return false;

    GenericChunkedArray<3,PointCoordinateType>* verticesDisplacement = new GenericChunkedArray<3,PointCoordinateType>;
    if (!verticesDisplacement->resize(vertCount))
    {
        //not enough memory
        verticesDisplacement->release();
        return false;
    }

    //compute the number of edges to which belong each vertex
    unsigned* edgesCount = new unsigned[vertCount];
    if (!edgesCount)
    {
        //not enough memory
        verticesDisplacement->release();
        return false;
    }
    memset(edgesCount, 0, sizeof(unsigned)*vertCount);
    placeIteratorAtBegining();
    for(unsigned j=0; j<faceCount; j++)
    {
        const CCLib::TriangleSummitsIndexes* tri = getNextTriangleIndexes();
        edgesCount[tri->i1]+=2;
        edgesCount[tri->i2]+=2;
        edgesCount[tri->i3]+=2;
    }

    //progress dialog
    CCLib::NormalizedProgress* nProgress = 0;
    if (progressCb)
    {
        unsigned totalSteps = nbIteration;
        nProgress = new CCLib::NormalizedProgress(progressCb,totalSteps);
        progressCb->setMethodTitle("Laplacian smooth");
        progressCb->setInfo(qPrintable(QString("Iterations: %1\nVertices: %2\nFaces: %3").arg(nbIteration).arg(vertCount).arg(faceCount)));
        progressCb->start();
    }

    //repeat Laplacian smoothing iterations
    for(unsigned iter = 0; iter < nbIteration; iter++)
    {
        verticesDisplacement->fill(0);

        //for each triangle
        placeIteratorAtBegining();
        for(unsigned j=0; j<faceCount; j++)
        {
            const CCLib::TriangleSummitsIndexes* tri = getNextTriangleIndexes();

            const CCVector3* A = m_associatedCloud->getPoint(tri->i1);
            const CCVector3* B = m_associatedCloud->getPoint(tri->i2);
            const CCVector3* C = m_associatedCloud->getPoint(tri->i3);

            CCVector3 dAB = (*B-*A);
            CCVector3 dAC = (*C-*A);
            CCVector3 dBC = (*C-*B);

            CCVector3* dA = (CCVector3*)verticesDisplacement->getValue(tri->i1);
            (*dA) += dAB+dAC;
            CCVector3* dB = (CCVector3*)verticesDisplacement->getValue(tri->i2);
            (*dB) += dBC-dAB;
            CCVector3* dC = (CCVector3*)verticesDisplacement->getValue(tri->i3);
            (*dC) -= dAC+dBC;
        }

        if (nProgress && !nProgress->oneStep())
        {
            //cancelled by user
            break;
        }

        //apply displacement
        verticesDisplacement->placeIteratorAtBegining();
        for (unsigned i=0; i<vertCount; i++)
        {
            //this is a "persistent" pointer and we know what type of cloud is behind ;)
            CCVector3* P = const_cast<CCVector3*>(m_associatedCloud->getPointPersistentPtr(i));
            const CCVector3* d = (const CCVector3*)verticesDisplacement->getValue(i);
            (*P) += (*d)*(factor/(PointCoordinateType)edgesCount[i]);
        }
    }

    m_associatedCloud->updateModificationTime();

    if (hasNormals())
        computeNormals();

    if (verticesDisplacement)
        verticesDisplacement->release();
//.........这里部分代码省略.........
开发者ID:eimix,项目名称:trunk,代码行数:101,代码来源:ccGenericMesh.cpp

示例7: resampleCloudSpatially

ReferenceCloud* CloudSamplingTools::resampleCloudSpatially(GenericIndexedCloudPersist* theCloud,
															PointCoordinateType minDistance,
															DgmOctree* theOctree/*=0*/,
															GenericProgressCallback* progressCb/*=0*/)
{
	assert(theCloud);
    unsigned cloudSize = theCloud->size();

    DgmOctree *_theOctree=theOctree;
	if (!_theOctree)
	{
		_theOctree = new DgmOctree(theCloud);
		if (_theOctree->build()<(int)cloudSize)
		{
			delete _theOctree;
			return 0;
		}
	}

    ReferenceCloud* sampledCloud = new ReferenceCloud(theCloud);
    if (!sampledCloud->reserve(cloudSize))
	{
		if (!theOctree)
			delete _theOctree;
		return 0;
	}

	GenericChunkedArray<1,bool>* markers = new GenericChunkedArray<1,bool>(); //DGM: upgraded from vector, as this can be quite huge!
    if (!markers->resize(cloudSize,true,true))
	{
		markers->release();
		if (!theOctree)
			delete _theOctree;
		delete sampledCloud;
		return 0;
	}

	NormalizedProgress* normProgress=0;
    if (progressCb)
    {
        progressCb->setInfo("Spatial resampling");
		normProgress = new NormalizedProgress(progressCb,cloudSize);
        progressCb->reset();
        progressCb->start();
    }

	//for each point in the cloud that is still 'marked', we look
	//for its neighbors and remove their own marks
    DgmOctree::NearestNeighboursSphericalSearchStruct nss;
    nss.level = _theOctree->findBestLevelForAGivenNeighbourhoodSizeExtraction(minDistance);
	
	markers->placeIteratorAtBegining();
    for (unsigned i=0; i<cloudSize; i++, markers->forwardIterator())
    {
		//progress indicator
		if (normProgress && !normProgress->oneStep())
		{
			//cancel process
			delete sampledCloud;
			sampledCloud = 0;
			break;
		}

		//no mark? we skip this point
		if (!markers->getCurrentValue())
            continue;

		//init neighbor search structure
		theCloud->getPoint(i,nss.queryPoint);
		bool inbounds = false;
		_theOctree->getTheCellPosWhichIncludesThePoint(&nss.queryPoint, nss.cellPos, nss.level, inbounds);
		nss.truncatedCellCode = (inbounds ? _theOctree->generateTruncatedCellCode(nss.cellPos, nss.level) : DgmOctree::INVALID_CELL_CODE);
		_theOctree->computeCellCenter(nss.cellPos, nss.level, nss.cellCenter);

        //add the points that lie in the same cell (faster)
		{
			ReferenceCloud* Y = _theOctree->getPointsInCell(nss.truncatedCellCode, nss.level, true);
			unsigned count = Y->size();
			try
			{
				nss.pointsInNeighbourhood.resize(count);
			}
			catch (std::bad_alloc) //out of memory
			{
				//stop process
				delete sampledCloud;
				sampledCloud = 0;
				break;
			}

			unsigned realCount = 0;
			DgmOctree::NeighboursSet::iterator it = nss.pointsInNeighbourhood.begin();
			for (unsigned j=0; j<count; ++j)
			{
				unsigned index = Y->getPointGlobalIndex(j);
				if (index != i && markers->getValue(index)) //no need to add the point itself and those already flagged off
				{
					it->point = Y->getPointPersistentPtr(j);
					it->pointIndex = index;
					++it;
//.........这里部分代码省略.........
开发者ID:uplusplus,项目名称:cloudcompare,代码行数:101,代码来源:CloudSamplingTools.cpp

示例8: ExtractPlanarFacets


//.........这里部分代码省略.........
							useRetroProjectionError,
							progressCb);
	if (result < 0)
	{
		ccLog::Error("[FastMarchingForFacetExtraction] Something went wrong during initialization...");
		flags->release();
		if (!_theOctree)
			delete theOctree;
		return -6;
	}

	//progress notification
	if (progressCb)
	{
		progressCb->update(0);
		if (progressCb->textCanBeEdited())
		{
			progressCb->setMethodTitle("Facets extraction");
			progressCb->setInfo(qPrintable(QString("Octree level: %1\nPoints: %2").arg(octreeLevel).arg(numberOfPoints)));
		}
		progressCb->start();
		QApplication::processEvents();
	}

	const int octreeWidth = (1<<octreeLevel)-1;

	//enable 26-connectivity mode
	//fm.setExtendedConnectivity(true);

	//while non-processed points remain...
	unsigned resolvedPoints = 0;
	int lastProcessedPoint = -1;
	unsigned facetIndex = 0;
	while (true)
	{
		//find the next non-processed point
		do
		{
			++lastProcessedPoint;
		}
		while (lastProcessedPoint < static_cast<int>(numberOfPoints) && flags->getValue(lastProcessedPoint) != 0);

		//all points have been processed? Then we can stop.
		if (lastProcessedPoint == static_cast<int>(numberOfPoints))
			break;

		//we start the propagation from this point
		//its corresponding cell in fact ;)
		const CCVector3 *thePoint = theCloud->getPoint(lastProcessedPoint);
		Tuple3i pos;
		theOctree->getTheCellPosWhichIncludesThePoint(thePoint, pos, octreeLevel);

		//clipping (in case the octree is not 'complete')
		pos.x = std::min(octreeWidth, pos.x);
		pos.y = std::min(octreeWidth, pos.y);
		pos.z = std::min(octreeWidth, pos.z);

		//set corresponding FM cell as 'seed'
		if (!fm.setSeedCell(pos))
		{
			//an error occurred?!
			//result = -7;
			//break;
			continue;
		}

		//launch propagation
		int propagationResult = fm.propagate();

		//compute the number of points processed during this pass
		unsigned count = fm.updateFlagsTable(theCloud,*flags,propagationResult >= 0 ? ++facetIndex : 0); //0 = invalid facet index

		if (count != 0)
		{
			resolvedPoints += count;
			if (progressCb)
			{
				if (progressCb->isCancelRequested())
				{
					result = -7;
					break;
				}
				progressCb->update(static_cast<float>(resolvedPoints)/static_cast<float>(numberOfPoints)*100.0f);
			}
		}

		fm.cleanLastPropagation();
	}

	if (progressCb)
		progressCb->stop();

	flags->release();
	flags = 0;

	if (!_theOctree)
		delete theOctree;

	return result;
}
开发者ID:3660628,项目名称:trunk,代码行数:101,代码来源:fastMarchingForFacetExtraction.cpp


注:本文中的GenericChunkedArray::getValue方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。