本文整理汇总了C++中GenericChunkedArray::getValue方法的典型用法代码示例。如果您正苦于以下问题:C++ GenericChunkedArray::getValue方法的具体用法?C++ GenericChunkedArray::getValue怎么用?C++ GenericChunkedArray::getValue使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GenericChunkedArray
的用法示例。
在下文中一共展示了GenericChunkedArray::getValue方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: updateFlagsTable
unsigned FastMarchingForFacetExtraction::updateFlagsTable( ccGenericPointCloud* theCloud,
GenericChunkedArray<1,unsigned char> &flags,
unsigned facetIndex)
{
if (!m_initialized || !m_currentFacetPoints)
return 0;
unsigned pointCount = m_currentFacetPoints->size();
for (unsigned k=0; k<pointCount; ++k)
{
unsigned index = m_currentFacetPoints->getPointGlobalIndex(k);
flags.setValue(index,1);
theCloud->setPointScalarValue(index,static_cast<ScalarType>(facetIndex));
}
if (m_currentFacetPoints)
m_currentFacetPoints->clear(false);
/*for (size_t i=0; i<m_activeCells.size(); ++i)
{
//we remove the processed cell so as to be sure not to consider them again!
CCLib::FastMarching::Cell* cell = m_theGrid[m_activeCells[i]];
m_theGrid[m_activeCells[i]] = 0;
if (cell)
delete cell;
}
//*/
//unsigned pointCount = 0;
CCLib::ReferenceCloud Yk(m_octree->associatedCloud());
for (size_t i=0; i<m_activeCells.size(); ++i)
{
PlanarCell* aCell = static_cast<PlanarCell*>(m_theGrid[m_activeCells[i]]);
if (!m_octree->getPointsInCell(aCell->cellCode,m_gridLevel,&Yk,true))
continue;
for (unsigned k=0; k<Yk.size(); ++k)
{
unsigned index = Yk.getPointGlobalIndex(k);
assert(flags.getValue(index) == 1);
//flags.setValue(index,1);
//++pointCount;
}
m_theGrid[m_activeCells[i]] = 0;
delete aCell;
}
return pointCount;
}
示例2: samplePoints
ccPointCloud* ccGenericMesh::samplePoints( bool densityBased,
double samplingParameter,
bool withNormals,
bool withRGB,
bool withTexture,
CCLib::GenericProgressCallback* pDlg/*=0*/)
{
bool withFeatures = (withNormals || withRGB || withTexture);
GenericChunkedArray<1,unsigned>* triIndices = (withFeatures ? new GenericChunkedArray<1,unsigned> : 0);
CCLib::SimpleCloud* sampledCloud = 0;
if (densityBased)
{
sampledCloud = CCLib::MeshSamplingTools::samplePointsOnMesh(this,samplingParameter,pDlg,triIndices);
}
else
{
sampledCloud = CCLib::MeshSamplingTools::samplePointsOnMesh(this,static_cast<unsigned>(samplingParameter),pDlg,triIndices);
}
//convert to real point cloud
ccPointCloud* cloud = 0;
if (sampledCloud)
{
cloud = ccPointCloud::From(sampledCloud);
delete sampledCloud;
sampledCloud = 0;
}
if (!cloud)
{
if (triIndices)
triIndices->release();
ccLog::Warning("[ccGenericMesh::samplePoints] Not enough memory!");
return 0;
}
if (withFeatures && triIndices && triIndices->currentSize() >= cloud->size())
{
//generate normals
if (withNormals && hasNormals())
{
if (cloud->reserveTheNormsTable())
{
for (unsigned i=0; i<cloud->size(); ++i)
{
unsigned triIndex = triIndices->getValue(i);
const CCVector3* P = cloud->getPoint(i);
CCVector3 N(0,0,1);
interpolateNormals(triIndex,*P,N);
cloud->addNorm(N);
}
cloud->showNormals(true);
}
else
{
ccLog::Warning("[ccGenericMesh::samplePoints] Failed to interpolate normals (not enough memory?)");
}
}
//generate colors
if (withTexture && hasMaterials())
{
if (cloud->reserveTheRGBTable())
{
for (unsigned i=0; i<cloud->size(); ++i)
{
unsigned triIndex = triIndices->getValue(i);
const CCVector3* P = cloud->getPoint(i);
colorType C[3]={MAX_COLOR_COMP,MAX_COLOR_COMP,MAX_COLOR_COMP};
getColorFromMaterial(triIndex,*P,C,withRGB);
cloud->addRGBColor(C);
}
cloud->showColors(true);
}
else
{
ccLog::Warning("[ccGenericMesh::samplePoints] Failed to export texture colors (not enough memory?)");
}
}
else if (withRGB && hasColors())
{
if (cloud->reserveTheRGBTable())
{
for (unsigned i=0; i<cloud->size(); ++i)
{
unsigned triIndex = triIndices->getValue(i);
const CCVector3* P = cloud->getPoint(i);
colorType C[3] = { MAX_COLOR_COMP, MAX_COLOR_COMP, MAX_COLOR_COMP };
interpolateColors(triIndex,*P,C);
cloud->addRGBColor(C);
}
//.........这里部分代码省略.........
示例3: OrientNormals
//.........这里部分代码省略.........
{
ccLog::Error("[orientNormalsWithFM] Something went wrong during initialization...");
cloud->deleteScalarField(sfIdx);
cloud->setCurrentScalarField(oldSfIdx);
resolved->release();
return -6;
}
//progress notification
if (progressCb)
{
if (progressCb->textCanBeEdited())
{
progressCb->setMethodTitle("Norms direction");
progressCb->setInfo(qPrintable(QString("Octree level: %1\nPoints: %2").arg(octreeLevel).arg(numberOfPoints)));
}
progressCb->update(0);
progressCb->start();
}
const int octreeWidth = (1<<octreeLevel)-1;
//enable 26-connectivity
//fm.setExtendedConnectivity(true);
//while non-processed points remain...
unsigned resolvedPoints = 0;
int lastProcessedPoint = -1;
bool success = true;
while (success)
{
//find the next non-processed point
do
{
++lastProcessedPoint;
}
while (lastProcessedPoint < static_cast<int>(numberOfPoints) && resolved->getValue(lastProcessedPoint) != 0);
//all points have been processed? Then we can stop.
if (lastProcessedPoint == static_cast<int>(numberOfPoints))
break;
//we start the propagation from this point
//its corresponding cell in fact ;)
const CCVector3 *thePoint = cloud->getPoint(lastProcessedPoint);
Tuple3i cellPos;
octree->getTheCellPosWhichIncludesThePoint(thePoint, cellPos, octreeLevel);
//clipping (in case the octree is not 'complete')
cellPos.x = std::min(octreeWidth, cellPos.x);
cellPos.y = std::min(octreeWidth, cellPos.y);
cellPos.z = std::min(octreeWidth, cellPos.z);
//set corresponding FM cell as 'seed'
fm.setSeedCell(cellPos);
//launch propagation
int propagationResult = fm.propagate();
//if it's a success
if (propagationResult >= 0)
{
//compute the number of points processed during this pass
unsigned count = fm.updateResolvedTable(cloud,*resolved,theNorms);
if (count != 0)
{
resolvedPoints += count;
if (progressCb)
progressCb->update(static_cast<float>(resolvedPoints)/static_cast<float>(numberOfPoints)*100.0f);
}
fm.cleanLastPropagation();
}
else
{
ccLog::Error("An error occurred during front propagation! Process cancelled...");
success = false;
}
}
if (progressCb)
progressCb->stop();
resolved->release();
resolved = 0;
cloud->showNormals(true);
#ifdef QT_DEBUG
cloud->setCurrentDisplayedScalarField(sfIdx);
cloud->getCurrentDisplayedScalarField()->computeMinAndMax();
cloud->showSF(true);
#else
cloud->deleteScalarField(sfIdx);
cloud->setCurrentScalarField(oldSfIdx);
cloud->showSF(sfWasDisplayed);
#endif
return success;
}
示例4: projectColors
ccGBLSensor::ColorGrid* ccGBLSensor::projectColors( CCLib::GenericCloud* cloud,
const ColorGrid& theColors) const
{
if (!cloud || !theColors.isAllocated())
return 0;
unsigned gridSize = m_depthBuffer.height*m_depthBuffer.width;
if (gridSize == 0)
return 0; //depth buffer empty or not initialized!
//number of points per cell of the depth map
std::vector<size_t> pointPerDMCell;
try
{
pointPerDMCell.resize(gridSize,0);
}
catch(std::bad_alloc)
{
//not enough memory
return 0;
}
//temp. array for accumulation
GenericChunkedArray<3,float>* colorAccumGrid = new GenericChunkedArray<3,float>;
{
float blackF[3] = {0,0,0};
if (!colorAccumGrid->resize(gridSize,true,blackF))
return 0; //not enough memory
}
//final array
ColorsTableType* colorGrid = new ColorsTableType;
{
if (!colorGrid->resize(gridSize,true,ccColor::black.rgba))
{
colorAccumGrid->release();
return 0; //not enough memory
}
}
//project colors
{
unsigned pointCount = cloud->size();
cloud->placeIteratorAtBegining();
{
for (unsigned i=0; i<pointCount; ++i)
{
const CCVector3 *P = cloud->getNextPoint();
CCVector2 Q;
PointCoordinateType depth;
projectPoint(*P,Q,depth,m_activeIndex);
unsigned x,y;
if (convertToDepthMapCoords(Q.x,Q.y,x,y))
{
unsigned index = y*m_depthBuffer.width+x;
//accumulate color
const colorType* srcC = theColors.getValue(i);
float* destC = colorAccumGrid->getValue(index);
destC[0] += srcC[0];
destC[1] += srcC[1];
destC[2] += srcC[2];
++pointPerDMCell[index];
}
else
{
//shouldn't happen!
assert(false);
}
}
}
}
//normalize
{
for (unsigned i=0; i<gridSize; ++i)
{
if (pointPerDMCell[i] != 0)
{
const float* srcC = colorAccumGrid->getValue(i);
colorType* destC = colorGrid->getValue(i);
destC[0] = static_cast<colorType>( srcC[0] / pointPerDMCell[i] );
destC[1] = static_cast<colorType>( srcC[1] / pointPerDMCell[i] );
destC[2] = static_cast<colorType>( srcC[2] / pointPerDMCell[i] );
}
}
}
colorAccumGrid->release();
return colorGrid;
}
示例5: ResolveNormsDirectionByFrontPropagation
//.........这里部分代码省略.........
{
ccLog::Error("[ccFastMarchingForNormsDirection] Something went wrong during initialization...");
theCloud->deleteScalarField(sfIdx);
theCloud->setCurrentScalarField(oldSfIdx);
resolved->release();
if (!inputOctree)
delete theOctree;
return -6;
}
//progress notification
if (progressCb)
{
progressCb->reset();
progressCb->setMethodTitle("Norms direction");
progressCb->setInfo(qPrintable(QString("Octree level: %1\nPoints: %2").arg(octreeLevel).arg(numberOfPoints)));
progressCb->start();
}
const int octreeWidth = (1<<octreeLevel)-1;
//enable 26-connectivity
//fm.setExtendedConnectivity(true);
//while non-processed points remain...
unsigned resolvedPoints = 0;
int lastProcessedPoint = -1;
while (true)
{
//find the next non-processed point
do
{
++lastProcessedPoint;
}
while (lastProcessedPoint < static_cast<int>(numberOfPoints) && resolved->getValue(lastProcessedPoint) != 0);
//all points have been processed? Then we can stop.
if (lastProcessedPoint == static_cast<int>(numberOfPoints))
break;
//we start the propagation from this point
//its corresponding cell in fact ;)
const CCVector3 *thePoint = theCloud->getPoint(lastProcessedPoint);
int pos[3];
theOctree->getTheCellPosWhichIncludesThePoint(thePoint,pos,octreeLevel);
//clipping (in case the octree is not 'complete')
pos[0] = std::min(octreeWidth,pos[0]);
pos[1] = std::min(octreeWidth,pos[1]);
pos[2] = std::min(octreeWidth,pos[2]);
//set corresponding FM cell as 'seed'
fm.setSeedCell(pos);
//launch propagation
int propagationResult = fm.propagate();
//if it's a success
if (propagationResult >= 0)
{
//compute the number of points processed during this pass
unsigned count = fm.updateResolvedTable(theCloud,*resolved,theNorms);
if (count != 0)
{
resolvedPoints += count;
if (progressCb)
progressCb->update(static_cast<float>(resolvedPoints)/static_cast<float>(numberOfPoints)*100.0f);
}
fm.cleanLastPropagation();
}
else
{
ccLog::Error("An error occurred during front propagation! Process cancelled...");
break;
}
}
if (progressCb)
progressCb->stop();
resolved->release();
resolved = 0;
if (!inputOctree)
delete theOctree;
theCloud->showNormals(true);
#ifdef _DEBUG
theCloud->setCurrentDisplayedScalarField(sfIdx);
theCloud->getCurrentDisplayedScalarField()->computeMinAndMax();
theCloud->showSF(true);
#else
theCloud->deleteScalarField(sfIdx);
theCloud->setCurrentScalarField(oldSfIdx);
#endif
return 0;
}
示例6: laplacianSmooth
bool ccGenericMesh::laplacianSmooth(unsigned nbIteration, float factor, CCLib::GenericProgressCallback* progressCb/*=0*/)
{
if (!m_associatedCloud)
return false;
//vertices
unsigned vertCount = m_associatedCloud->size();
//triangles
unsigned faceCount = size();
if (!vertCount || !faceCount)
return false;
GenericChunkedArray<3,PointCoordinateType>* verticesDisplacement = new GenericChunkedArray<3,PointCoordinateType>;
if (!verticesDisplacement->resize(vertCount))
{
//not enough memory
verticesDisplacement->release();
return false;
}
//compute the number of edges to which belong each vertex
unsigned* edgesCount = new unsigned[vertCount];
if (!edgesCount)
{
//not enough memory
verticesDisplacement->release();
return false;
}
memset(edgesCount, 0, sizeof(unsigned)*vertCount);
placeIteratorAtBegining();
for(unsigned j=0; j<faceCount; j++)
{
const CCLib::TriangleSummitsIndexes* tri = getNextTriangleIndexes();
edgesCount[tri->i1]+=2;
edgesCount[tri->i2]+=2;
edgesCount[tri->i3]+=2;
}
//progress dialog
CCLib::NormalizedProgress* nProgress = 0;
if (progressCb)
{
unsigned totalSteps = nbIteration;
nProgress = new CCLib::NormalizedProgress(progressCb,totalSteps);
progressCb->setMethodTitle("Laplacian smooth");
progressCb->setInfo(qPrintable(QString("Iterations: %1\nVertices: %2\nFaces: %3").arg(nbIteration).arg(vertCount).arg(faceCount)));
progressCb->start();
}
//repeat Laplacian smoothing iterations
for(unsigned iter = 0; iter < nbIteration; iter++)
{
verticesDisplacement->fill(0);
//for each triangle
placeIteratorAtBegining();
for(unsigned j=0; j<faceCount; j++)
{
const CCLib::TriangleSummitsIndexes* tri = getNextTriangleIndexes();
const CCVector3* A = m_associatedCloud->getPoint(tri->i1);
const CCVector3* B = m_associatedCloud->getPoint(tri->i2);
const CCVector3* C = m_associatedCloud->getPoint(tri->i3);
CCVector3 dAB = (*B-*A);
CCVector3 dAC = (*C-*A);
CCVector3 dBC = (*C-*B);
CCVector3* dA = (CCVector3*)verticesDisplacement->getValue(tri->i1);
(*dA) += dAB+dAC;
CCVector3* dB = (CCVector3*)verticesDisplacement->getValue(tri->i2);
(*dB) += dBC-dAB;
CCVector3* dC = (CCVector3*)verticesDisplacement->getValue(tri->i3);
(*dC) -= dAC+dBC;
}
if (nProgress && !nProgress->oneStep())
{
//cancelled by user
break;
}
//apply displacement
verticesDisplacement->placeIteratorAtBegining();
for (unsigned i=0; i<vertCount; i++)
{
//this is a "persistent" pointer and we know what type of cloud is behind ;)
CCVector3* P = const_cast<CCVector3*>(m_associatedCloud->getPointPersistentPtr(i));
const CCVector3* d = (const CCVector3*)verticesDisplacement->getValue(i);
(*P) += (*d)*(factor/(PointCoordinateType)edgesCount[i]);
}
}
m_associatedCloud->updateModificationTime();
if (hasNormals())
computeNormals();
if (verticesDisplacement)
verticesDisplacement->release();
//.........这里部分代码省略.........
示例7: resampleCloudSpatially
ReferenceCloud* CloudSamplingTools::resampleCloudSpatially(GenericIndexedCloudPersist* theCloud,
PointCoordinateType minDistance,
DgmOctree* theOctree/*=0*/,
GenericProgressCallback* progressCb/*=0*/)
{
assert(theCloud);
unsigned cloudSize = theCloud->size();
DgmOctree *_theOctree=theOctree;
if (!_theOctree)
{
_theOctree = new DgmOctree(theCloud);
if (_theOctree->build()<(int)cloudSize)
{
delete _theOctree;
return 0;
}
}
ReferenceCloud* sampledCloud = new ReferenceCloud(theCloud);
if (!sampledCloud->reserve(cloudSize))
{
if (!theOctree)
delete _theOctree;
return 0;
}
GenericChunkedArray<1,bool>* markers = new GenericChunkedArray<1,bool>(); //DGM: upgraded from vector, as this can be quite huge!
if (!markers->resize(cloudSize,true,true))
{
markers->release();
if (!theOctree)
delete _theOctree;
delete sampledCloud;
return 0;
}
NormalizedProgress* normProgress=0;
if (progressCb)
{
progressCb->setInfo("Spatial resampling");
normProgress = new NormalizedProgress(progressCb,cloudSize);
progressCb->reset();
progressCb->start();
}
//for each point in the cloud that is still 'marked', we look
//for its neighbors and remove their own marks
DgmOctree::NearestNeighboursSphericalSearchStruct nss;
nss.level = _theOctree->findBestLevelForAGivenNeighbourhoodSizeExtraction(minDistance);
markers->placeIteratorAtBegining();
for (unsigned i=0; i<cloudSize; i++, markers->forwardIterator())
{
//progress indicator
if (normProgress && !normProgress->oneStep())
{
//cancel process
delete sampledCloud;
sampledCloud = 0;
break;
}
//no mark? we skip this point
if (!markers->getCurrentValue())
continue;
//init neighbor search structure
theCloud->getPoint(i,nss.queryPoint);
bool inbounds = false;
_theOctree->getTheCellPosWhichIncludesThePoint(&nss.queryPoint, nss.cellPos, nss.level, inbounds);
nss.truncatedCellCode = (inbounds ? _theOctree->generateTruncatedCellCode(nss.cellPos, nss.level) : DgmOctree::INVALID_CELL_CODE);
_theOctree->computeCellCenter(nss.cellPos, nss.level, nss.cellCenter);
//add the points that lie in the same cell (faster)
{
ReferenceCloud* Y = _theOctree->getPointsInCell(nss.truncatedCellCode, nss.level, true);
unsigned count = Y->size();
try
{
nss.pointsInNeighbourhood.resize(count);
}
catch (std::bad_alloc) //out of memory
{
//stop process
delete sampledCloud;
sampledCloud = 0;
break;
}
unsigned realCount = 0;
DgmOctree::NeighboursSet::iterator it = nss.pointsInNeighbourhood.begin();
for (unsigned j=0; j<count; ++j)
{
unsigned index = Y->getPointGlobalIndex(j);
if (index != i && markers->getValue(index)) //no need to add the point itself and those already flagged off
{
it->point = Y->getPointPersistentPtr(j);
it->pointIndex = index;
++it;
//.........这里部分代码省略.........
示例8: ExtractPlanarFacets
//.........这里部分代码省略.........
useRetroProjectionError,
progressCb);
if (result < 0)
{
ccLog::Error("[FastMarchingForFacetExtraction] Something went wrong during initialization...");
flags->release();
if (!_theOctree)
delete theOctree;
return -6;
}
//progress notification
if (progressCb)
{
progressCb->update(0);
if (progressCb->textCanBeEdited())
{
progressCb->setMethodTitle("Facets extraction");
progressCb->setInfo(qPrintable(QString("Octree level: %1\nPoints: %2").arg(octreeLevel).arg(numberOfPoints)));
}
progressCb->start();
QApplication::processEvents();
}
const int octreeWidth = (1<<octreeLevel)-1;
//enable 26-connectivity mode
//fm.setExtendedConnectivity(true);
//while non-processed points remain...
unsigned resolvedPoints = 0;
int lastProcessedPoint = -1;
unsigned facetIndex = 0;
while (true)
{
//find the next non-processed point
do
{
++lastProcessedPoint;
}
while (lastProcessedPoint < static_cast<int>(numberOfPoints) && flags->getValue(lastProcessedPoint) != 0);
//all points have been processed? Then we can stop.
if (lastProcessedPoint == static_cast<int>(numberOfPoints))
break;
//we start the propagation from this point
//its corresponding cell in fact ;)
const CCVector3 *thePoint = theCloud->getPoint(lastProcessedPoint);
Tuple3i pos;
theOctree->getTheCellPosWhichIncludesThePoint(thePoint, pos, octreeLevel);
//clipping (in case the octree is not 'complete')
pos.x = std::min(octreeWidth, pos.x);
pos.y = std::min(octreeWidth, pos.y);
pos.z = std::min(octreeWidth, pos.z);
//set corresponding FM cell as 'seed'
if (!fm.setSeedCell(pos))
{
//an error occurred?!
//result = -7;
//break;
continue;
}
//launch propagation
int propagationResult = fm.propagate();
//compute the number of points processed during this pass
unsigned count = fm.updateFlagsTable(theCloud,*flags,propagationResult >= 0 ? ++facetIndex : 0); //0 = invalid facet index
if (count != 0)
{
resolvedPoints += count;
if (progressCb)
{
if (progressCb->isCancelRequested())
{
result = -7;
break;
}
progressCb->update(static_cast<float>(resolvedPoints)/static_cast<float>(numberOfPoints)*100.0f);
}
}
fm.cleanLastPropagation();
}
if (progressCb)
progressCb->stop();
flags->release();
flags = 0;
if (!_theOctree)
delete theOctree;
return result;
}