当前位置: 首页>>代码示例>>C++>>正文


C++ GAPopulation::size方法代码示例

本文整理汇总了C++中GAPopulation::size方法的典型用法代码示例。如果您正苦于以下问题:C++ GAPopulation::size方法的具体用法?C++ GAPopulation::size怎么用?C++ GAPopulation::size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GAPopulation的用法示例。


在下文中一共展示了GAPopulation::size方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: while

// Update the genomes in the 'best of all' population to reflect any 
// changes made to the current population.  We just grab the genomes with
// the highest scores from the current population, and if they are higher than
// those of the genomes in the boa population, they get copied.  Note that
// the bigger the boa array, the bigger your running performance hit because
// we have to look through all of the boa to figure out which are better than
// those in the population.  The fastest way to use the boa is to keep only 
// one genome in the boa population.  A flag of 'True' will reset the boa
// population so that it is filled with the best of the current population.
//   Unfortunately it could take a long time to update the boa array using the
// copy method.  We'd like to simply keep pointers to the best genomes, but
// the genomes change from generation to generation, so we can't depend on
// that.
//   Notice that keeping boa is useful even for overlapping populations.  The
// boa keeps individuals that are different from each other - the overlapping
// population may not.  However, keeping boa is most useful for populations
// with little overlap.
//   When we check to see if a potentially better member is already in our
// best-of-all population, we use the operator== comparator not the genome
// comparator to do the comparison.
void
GAStatistics::
updateBestIndividual(const GAPopulation & pop, GABoolean flag){
  if(boa == (GAPopulation *)0 || boa->size() == 0) return; // do nothing
  if(pop.order() != boa->order()) boa->order(pop.order());

  if(flag == gaTrue){		// reset the BOA array
    int j=0;
    for(int i=0; i<boa->size(); i++){
      boa->best(i).copy(pop.best(j));
      if(j < pop.size()-1) j++;
    }
    return;
  }

  if(boa->size() == 1){		// there's only one boa so replace it with bop
    if(boa->order() == GAPopulation::HIGH_IS_BEST &&
       pop.best().score() > boa->best().score())
      boa->best().copy(pop.best());
    if(boa->order() == GAPopulation::LOW_IS_BEST &&
       pop.best().score() < boa->best().score())
      boa->best().copy(pop.best());
  }
  else{
    int i=0, j, k;
    if(boa->order() == GAPopulation::HIGH_IS_BEST) {
      while(i < pop.size() && pop.best(i).score() > boa->worst().score()){
	for(k=0;
	    pop.best(i).score() < boa->best(k).score() && k < boa->size();
	    k++);
	for(j=k; j<boa->size(); j++){
	  if(pop.best(i) == boa->best(j)) break;
	  if(pop.best(i).score() > boa->best(j).score()){
	    boa->worst().copy(pop.best(i));        // replace worst individual
	    boa->sort(gaTrue, GAPopulation::RAW);  // re-sort the population
	    break;
	  }
	}
	i++;
      }
    }
    if(boa->order() == GAPopulation::LOW_IS_BEST) {
      while(i < pop.size() && pop.best(i).score() < boa->worst().score()){
	for(k=0;
	    pop.best(i).score() > boa->best(k).score() && k < boa->size();
	    k++);
	for(j=k; j<boa->size(); j++){
	  if(pop.best(i) == boa->best(j)) break;
	  if(pop.best(i).score() < boa->best(j).score()){
	    boa->worst().copy(pop.best(i));        // replace worst individual
	    boa->sort(gaTrue, GAPopulation::RAW);  // re-sort the population
	    break;
	  }
	}
	i++;
      }
    }
  }
  return;
}
开发者ID:boogerlad,项目名称:pngwolf,代码行数:80,代码来源:GAStatistics.C

示例2: UnpackIndividual

// This assumes that the original population contains at least one individual
// from which to grow.  If it does not, the data in the buffer will be ignored.
int
RecvPopulation(GAPopulation& pop) {
  int status = 0;
  int psize = 0;
  status = pvm_upkint(&psize, 1, 1);
  pop.size(psize);
  for(int i=0; i<pop.size() && status>=0; i++)
    status = UnpackIndividual(pop.individual(i));
  return status;
}
开发者ID:distanceModling,项目名称:GAlib,代码行数:12,代码来源:genome.C

示例3:

// This is an implementation of speciation using the sharing method described
// by goldberg in his book.  This requires a user-defined distance function in
// order to work.  The distance function returns a value between
// 0 and 1 inclusive to tell us how similar two genomes are to each other.
// A value of 0 means that the two genomes are identical to each other, a
// value of 1 means they are completely different.
//   A single genome is identical to itself, so d(i,i) is 0.
//   If alpha is 1 then we don't use pow().
//   If we have a comparator to use, use it.  If not, use the comparator of
// each genome.
//   We can cut in half the number of calls to the sharing function by keeping
// one half of the ixj matrix.  This is because d(i,j) is the same as d(j,i).
// We cache the distances in an upper right triangular matrix stored as a 
// series of floats.
//   If the population is maximizing then we derate by dividing.  If the 
// population is minimizing then we derate by multiplying.  First we check to 
// see if there is a GA using the population.  If there is, we use its min/max
// flag to determine whether or not we should be minimizing or maximizing.  If
// there is not GA with the population, then we use the population's sort order
// as the basis for whether to minimize or maximize.
// *** This could be done with n*n/2 instead of n*n, to reduce storage, but we
// can't reduce computation any more...
// *** probably should use the diversity built-in to the population...
void 
GASharing::evaluate(const GAPopulation& p) {
  if(p.size() > (int)N){
    delete [] d;
    N = p.size();
    d = new float[N*N];
  }
  int n = p.size();

  int i, j;
  if(df) {
    for(i=0; i<n; i++){		// calculate and cache the distances
      d[i*n+i] = 0.0;		// each genome is same as itself
      for(j=i+1; j<n; j++)
	d[i*n+j] = d[j*n+i] = (*df)(p.individual(i), p.individual(j));
    }
  }
  else {
    for(i=0; i<n; i++){		// calculate and cache the distances
      d[i*n+i] = 0.0;		// each genome is same as itself
      for(j=i+1; j<n; j++)
	d[i*n+j] = d[j*n+i] = p.individual(i).compare(p.individual(j));
    }
  }

  int mm;
  if(_minmax == 0) {
    if(p.geneticAlgorithm())
      mm = p.geneticAlgorithm()->minimaxi();
    else
      mm = ((p.order() == GAPopulation::HIGH_IS_BEST) ? 
	    GAGeneticAlgorithm::MAXIMIZE : GAGeneticAlgorithm::MINIMIZE);
  }
  else {
    mm = _minmax;
  }

  for(i=0; i<n; i++){		// now derate the fitness of each genome
    double sum = 0.0;
    for(j=0; j<n; j++) {
      if(d[i*n+j] < _sigma) {
	if(_alpha == 1)
	  sum += ((d[i*n+j] >= _sigma) ? 0.0 : 1.0 - d[i*n+j]/_sigma);
	else
	  sum += ((d[i*n+j]>=_sigma) ? 0.0 : 1.0-pow(d[i*n+j]/_sigma,_alpha));
      }
    }
    double f;
    if(mm == GAGeneticAlgorithm::MINIMIZE)
      f = p.individual(i).score() * sum;
    else
      f = p.individual(i).score() / sum;
    p.individual(i).fitness((float)f);       // might lose information here!
  }
}
开发者ID:B0RJA,项目名称:GAlib-mpi,代码行数:78,代码来源:GAScaling.C

示例4: PackIndividual

// This should eventually use a genome member function rather than an external.
// When we pack/unpack a population we also stuff its statistics.
int
SendPopulation(int toid, const GAPopulation& pop) {
  int status = 0;
  int psize = pop.size();
  status = pvm_initsend(PvmDataDefault);
  status = pvm_pkint(&psize, 1, 1);
  for(int i=0; i<pop.size() && status>=0; i++)
    status = PackIndividual(pop.individual(i));
  status = pvm_send(toid, MSG_INCOMING_POPULATION);
  return status;
}
开发者ID:distanceModling,项目名称:GAlib,代码行数:13,代码来源:genome.C

示例5: GAErr

// This is an implementation of the most basic form of power scaling, where the
// fitness is a function of the objective score raised to some power.  Negative
// objective scores are not allowed.  If we get one, we post an error and set
// all of the fitness scores to zero.
void 
GAPowerLawScaling::evaluate(const GAPopulation & p) {
  for(int i=0; i<p.size(); i++){
    double f = p.individual(i).score();
    if(f < 0.0){
      GAErr(GA_LOC, className(), "evaluate", gaErrPowerNegFitness);
      for(int ii=0; ii<p.size(); ii++)
	p.individual(ii).fitness(0.0);
      return;
    }
    f = pow(f,(double)k);
    p.individual(i).fitness((float)f);       // might lose information here!
  }
}
开发者ID:B0RJA,项目名称:GAlib-mpi,代码行数:18,代码来源:GAScaling.C

示例6:

///  The default evaluator simply calls the evaluate member of each genome in
/// the population.  The population object takes care of setting/unsetting the
/// status flags for indicating when the population needs to be updated again.
void
GAPopulation::DefaultEvaluator(GAPopulation & p)
{
    for(int i = 0; i < p.size(); i++)
    {
        p.individual(i).evaluate();
    }
}
开发者ID:distanceModling,项目名称:GAlib,代码行数:11,代码来源:GAPopulation.C

示例7:

//  The default evaluator simply calls the evaluate member of each genome in
// the population.  The population object takes care of setting/unsetting the 
// status flags for indicating when the population needs to be updated again.
void 
GAPopulation::DefaultEvaluator(GAPopulation & p){

  // MPI aux vars
  int mpi_rc;
  MPI_Status mpi_Stat;

  // Array to store the scores of the individuals
  float *mpi_score;
  mpi_score = (float*)malloc( p.size()*sizeof(float) );

  // Each thread computes individuals from is to (ie-1)
  int is, ie;
  is = (int)((float)p.size()/(float)p.vmpi_tasks*((float)p.vmpi_rank));
  ie = (int)((float)p.size()/(float)p.vmpi_tasks*((float)p.vmpi_rank+1.0));
  if(ie>p.size() || p.vmpi_rank==(p.vmpi_tasks-1)){ ie = p.size(); }

  // Individual loop
  for(int i=is; i<ie; i++)
  {
    p.individual(i).evaluate();
    mpi_score[i] = p.individual(i).score();
  }

  // The master process:
  if(p.vmpi_rank == 0)
  {
    // recives the partial scores
    for(int i=1; i<p.vmpi_tasks; i++)
    {
      is = (int)((float)p.size()/(float)p.vmpi_tasks*((float)i));
      ie = (int)((float)p.size()/(float)p.vmpi_tasks*((float)i+1.0));
      mpi_rc = MPI_Recv(mpi_score+is, ie-is, MPI_FLOAT, i, 1, MPI_COMM_WORLD, &mpi_Stat);
    }
    // and sends the whole array
    for(int i=1; i<p.vmpi_tasks; i++)
      mpi_rc = MPI_Send(mpi_score, p.size(), MPI_FLOAT, i, 1, MPI_COMM_WORLD);
  }
  // The rest:
  else
  {
    // sends the partial computed scores
	mpi_rc = MPI_Send(mpi_score+is, ie-is, MPI_FLOAT, 0, 1, MPI_COMM_WORLD);
    // and recieves the whole array
    mpi_rc = MPI_Recv(mpi_score, p.size(), MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &mpi_Stat);
  }

  // Update the scores of the individuals
  for(int i=0; i<p.size(); i++)
    p.individual(i).score(mpi_score[i]);

}
开发者ID:B0RJA,项目名称:GAlib-mpi,代码行数:55,代码来源:GAPopulation.C

示例8: if

void 
GALinearScaling::evaluate(const GAPopulation & p) {
// Here we calculate the slope and intercept using the multiplier and objective
// score ranges...

  double pmin = p.min();
  double pmax = p.max();
  double pave = p.ave();

  double delta, a, b;
  if(pave == pmax){	// no scaling - population is all the same
    a = 1.0; 
    b = 0.0;
  }
  else if(pmin > ((double)c * pave - pmax)/((double)c - 1.0)){
    delta = pmax - pave;
    a = ((double)c - 1.0) * pave / delta;
    b = pave * (pmax - (double)c * pave) / delta;
  }
  else{				// stretch to make min be 0
    delta = pave - pmin;
    a = pave / delta;
    b = -pmin * pave / delta;
  }

// and now we calculate the scaled scaled values.  Negative scores are not
// allowed with this kind of scaling, so check for negative values.  If we get
// a negative value, dump an error message then set all of the scores to 0.

  for(int i=0; i<p.size(); i++){
    double f = p.individual(i).score();
    if(f < 0.0){
      GAErr(GA_LOC, className(), "evaluate", gaErrNegFitness);
      for(int ii=0; ii<p.size(); ii++)
	p.individual(ii).fitness(0.0);
      return;
    }
    f = f * a + b;
    if(f < 0) f = 0.0;	// truncate if necessary (only due to roundoff error)
    p.individual(i).fitness((float)f);       // might lose information here!
  }
}
开发者ID:B0RJA,项目名称:GAlib-mpi,代码行数:42,代码来源:GAScaling.C

示例9: GAGeneticAlgorithm

GADemeGA::GADemeGA(const GAPopulation& p) : GAGeneticAlgorithm(p) {
  if(p.size() < 1) {
    GAErr(GA_LOC, className(), "GADemeGA(GAPopulation&)", gaErrNoIndividuals);
    pop = 0; nrepl = 0; tmppop = 0; pstats = 0;
  }
  else {
    npop = gaDefNPop;
    params.add(gaNnPopulations, gaSNnPopulations, GAParameter::INT, &npop);
    nmig = gaDefNMig;
    params.add(gaNnMigration, gaSNnMigration, GAParameter::INT, &nmig);
    unsigned int nr = pop->size()/2;

    nrepl = new int [npop];
    deme = new GAPopulation* [npop];
    pstats = new GAStatistics [npop];
    tmppop = new GAPopulation(p.individual(0), nr);
    
    for(unsigned int i=0; i<npop; i++) {
      nrepl[i] = nr;
      deme[i] = new GAPopulation(p);
    }
  }
}
开发者ID:boogerlad,项目名称:pngwolf,代码行数:23,代码来源:GADemeGA.C

示例10: memset

// Reset the GA's statistics based on the population.  To do this right you
// should initialize the population before you pass it to this routine.  If you
// don't, the stats will be based on a non-initialized population.
void
GAStatistics::reset(const GAPopulation & pop){
  curgen = 0;
  numsel = numcro = nummut = numrep = numeval = numpeval = 0;

  memset(gen, 0, Nscrs*sizeof(int));
  memset(aveScore, 0, Nscrs*sizeof(float));
  memset(maxScore, 0, Nscrs*sizeof(float));
  memset(minScore, 0, Nscrs*sizeof(float));
  memset(devScore, 0, Nscrs*sizeof(float));
  memset(divScore, 0, Nscrs*sizeof(float));
  nscrs = 0;
  setScore(pop);
  if(Nscrs > 0) flushScores();

  memset(cscore, 0, Nconv*sizeof(float));
  nconv = 0;			// should set to -1 then call setConv
  cscore[0] = 
    ((pop.order() == GAPopulation::HIGH_IS_BEST) ? pop.max() : pop.min());
//  cscore[0] = pop.max();
//  setConvergence(maxScore[0]);

  updateBestIndividual(pop, gaTrue);
  aveCur = aveInit = pop.ave();
  maxCur = maxInit = maxever = pop.max();
  minCur = minInit = minever = pop.min();
  devCur = devInit = pop.dev();
  divCur = divInit = ((dodiv == gaTrue) ? pop.div() : (float)-1.0);

  on = pop.ave();
  offmax = pop.max();
  offmin = pop.min();
  numpeval = pop.nevals();
  for(int i=0; i<pop.size(); i++)
    numeval += pop.individual(i).nevals();
}
开发者ID:boogerlad,项目名称:pngwolf,代码行数:39,代码来源:GAStatistics.C

示例11: while

//   This population evaluator is the administrator for the parallelization.
// It looks around to see when slaves are available to evaluate a genome.  As
// soon as a slave is available and a genome needs to be evaluated, this 
// routine sends it off.  When a slave is finished, it posts a message to 
// say so and this routine gets the message and grabs the results from the 
// slave that posted the message.
//   An index of -1 means that the slave has no assignment.  The first int in 
// the stream of stuff is always the ID of the slave (0-nslaves) that is 
// sending the information.  After that it is either nothing (the slave just 
// reported that it is ready for another genome) or it is a float (the score 
// of the genome that was assigned to the slave).
void 
PopulationEvaluator(GAPopulation& pop) {
  PVMDataPtr data = (PVMDataPtr)pop.userData();
  int* index = new int [data->nreq];
  int done = 0, outstanding = 0, next = 0;
  int bufid, status, bytes, msgtag, tid, who;

  while(!done) {
// If we have a genome that needs to be evaluated and one of the slaves is
// ready to evaluate it, send the genome to the slave.
    if(next < pop.size() && (bufid=pvm_nrecv(-1, MSG_READY)) != 0) {
      if(bufid > 0) {
	pvm_bufinfo(bufid, &bytes, &msgtag, &tid);
	status = SendGenomeData(pop.individual(next), tid);
	if(status >= 0) {
	  if((who = id2idx(tid, *data)) >= 0) {
	    index[who] = next; next++;
	    outstanding++;
	  }
	  else {
	    cerr << "PopEval: bogus tid mapping: " << tid << "\n";
	  }
	}
	else {
	  cerr << "PopEval: error sending data to: " << tid;
	  cerr << "  error code is: " << status << "\n";
	}
      }
      else {
	cerr << "PopEval: error from pvm_nrecv: " << bufid << "\n";
      }
    }

// If we have any genomes waiting for their evaluation and any slaves have 
// posted a message stating that they have a finished score ready for us, get
// the score from the slave and stuff it into the appropriate genome.
    if(outstanding > 0 && (bufid=pvm_nrecv(-1, MSG_GENOME_SCORE)) != 0) {
      if(bufid > 0) {
	pvm_bufinfo(bufid, &bytes, &msgtag, &tid);
	if((who = id2idx(tid, *data)) >= 0) {
	  if(index[who] >= 0) {
	    status = RecvGenomeScore(pop.individual(index[who]));
	    if(status >= 0) {
	      index[who] = -1;
	      outstanding--;
	    }
	    else {
	      cerr << "PopEval: error receiving score from: " << tid;
	      cerr << "  error code is: " << status << "\n";
	    }
	  }
	  else {
	    cerr << "PopEval: index conflict from tid " << tid << "\n";
	  }
	}
	else {
	  cerr << "PopEval: bogus tid mapping: " << tid << "\n";
	}
      }
      else {
	cerr << "PopEval: error from pvm_nrecv: " << bufid << "\n";
      }
    }

    if(next == pop.size() && outstanding == 0) done = 1;
    if(next > pop.size()) {
      cerr << "bogus value for next: " << next;
      cerr << "  popsize is: " << pop.size() << "\n";
    }
  }

  delete [] index;
}
开发者ID:distanceModling,项目名称:GAlib,代码行数:84,代码来源:genome.C

示例12: MyEvaluator

void MyEvaluator(GAPopulation &pop)
{
#pragma omp parallel for
	for(int i=0; i<pop.size(); i++)
		pop.individual(i).evaluate();
}
开发者ID:backo880607,项目名称:YuKonSolution,代码行数:6,代码来源:CombineGenome.cpp

示例13: GAPDEvaluator

void PetriDish::GAPDEvaluator( GAPopulation & pop )
{
    assert(pop.size() > 0);

    // Since this is a static method, get this population's associated PetriDish
    PetriDish* thisPetriDish = dynamic_cast<PetriDish*>(pop.geneticAlgorithm());
    assert(thisPetriDish);

#ifdef USING_GASIMPLEGA
    // A workaround for  oldPop not copying our Evaluator to the next set of Genomes (as opposed to hacking GASimpleGA.C)
    if ( thisPetriDish->_oldPopInitialized == false )
    {
        thisPetriDish->_oldPopInitialized = true;
        thisPetriDish->oldPop->initialize();
    }
#endif//USING_GASIMPLEGA

    // Use all of the available cores (as reported by the processor) for threads
    unsigned numberOfThreadsToUse;

#if USE_BOOST
    numberOfThreadsToUse = boost::thread::hardware_concurrency();
#else//USE_BOOST
    numberOfThreadsToUse = (unsigned)sysconf( _SC_NPROCESSORS_ONLN );
    int errorCode;
#endif//USE_BOOST

    // Allocate an array of pointers for the threads, as well as the associated background information
#if USE_BOOST
    boost::thread** backgroundThreads = new boost::thread*[numberOfThreadsToUse];
#else//USE_BOOST
    pthread_t* backgroundThreads = new pthread_t[numberOfThreadsToUse];
#endif//USE_BOOST
    assert( backgroundThreads );
    memset( backgroundThreads, 0, numberOfThreadsToUse * sizeof( void* ) );

    BackgroundEvaluator** backgroundEvaluators = new BackgroundEvaluator*[numberOfThreadsToUse];
    assert( backgroundEvaluators );
    memset( backgroundEvaluators, 0, numberOfThreadsToUse * sizeof( BackgroundEvaluator* ) );

#if DEBUG
    cout << "Evaluating new GAPopulation ( " << pop.size( ) << " )... ( using " << numberOfThreadsToUse << " threads )" << std::endl;
#endif//DEBUG

    int completed = 0;
    int indIndex = 0;
    u_int32_t tIndex = 0U;

#if DEBUG
    float highestScoreSoFar = 0.0f;
    float total = 0.0f;
#endif//DEBUG

    // Loop until every population member has been evaluated.
    while ( completed < pop.size( ) && ( thisPetriDish->_interrupt == false ) )
    {
        // If we still have members to evaluate, and there's a free thread open
        if ( ( indIndex < pop.size( ) ) && ( backgroundThreads[tIndex] == NULL ) )
        {
            // If we haven't allocated space for the evaluator thread information
            if( backgroundEvaluators[tIndex] == NULL )
            {
                backgroundEvaluators[tIndex] = new BackgroundEvaluator( &pop.individual( indIndex ), indIndex );
                assert( backgroundEvaluators[tIndex] != NULL );
            }
            else
            {
                assert(backgroundEvaluators[tIndex]->finished() == true);

                backgroundEvaluators[tIndex]->newIndividual( &pop.individual( indIndex ), indIndex);
            }
#if DEBUG
            cout << "Starting individual #" << indIndex + 1 << " ( of " << pop.size( ) << " )" << std::endl;
#endif//DEBUG

            // Kick off the thread
#if USE_BOOST
            try
            {
                backgroundThreads[tIndex] = new boost::thread( boost::ref(*backgroundEvaluators[tIndex]) );
            }
            catch(const std::exception& e)
            {
                cerr << "boost::thread exception: " << e.what() << std::endl;
                return;
            }
#else//USE_BOOST
            errorCode = pthread_create(&backgroundThreads[tIndex], NULL, backgroundEvaluate, backgroundEvaluators[tIndex]);
            if (errorCode!=0)
            {
                cerr << "pthread_create: Error #"<< errorCode << " (" << strerror(errorCode) << ")" << std::endl;
                return;
            }
#endif//USE_BOOST
            assert(backgroundThreads[tIndex]);

            indIndex++;
        }

        // Our cyclic thread index checks for the completion of a running thread
//.........这里部分代码省略.........
开发者ID:ml-lab,项目名称:Soft-Robots-Novelty-Search,代码行数:101,代码来源:PetriDish.cpp


注:本文中的GAPopulation::size方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。