当前位置: 首页>>代码示例>>C++>>正文


C++ GAPopulation类代码示例

本文整理汇总了C++中GAPopulation的典型用法代码示例。如果您正苦于以下问题:C++ GAPopulation类的具体用法?C++ GAPopulation怎么用?C++ GAPopulation使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了GAPopulation类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1:

/// This is the default population initializer.  It simply calls the initializer
/// for each member of the population.  Then we touch the population to tell it
/// that it needs to update stats and/or sort (but we don't actually force
/// either one to occur.
///   The population object takes care of setting/unsetting the status flags.
void
GAPopulation::DefaultInitializer(GAPopulation & p)
{
    for(int i = 0; i < p.size(); i++)
    {
        p.individual(i).initialize();
    }
}
开发者ID:distanceModling,项目名称:GAlib,代码行数:13,代码来源:GAPopulation.C

示例2:

// This is an implementation of the sigma truncation scaling method descibed in
// goldberg p 124.  If the scaled fitness is less than zero, we arbitrarily set
// it to zero (thus the truncation part of 'sigma truncation').
void 
GASigmaTruncationScaling::evaluate(const GAPopulation & p) {
  for(int i=0; i<p.size(); i++){
    double f = (double)(p.individual(i).score()) - (double)(p.ave());
    f += (double)c * (double)(p.dev());
    if(f < 0) f = 0.0;
    p.individual(i).fitness((float)f);       // might lose information here!
  }
}
开发者ID:B0RJA,项目名称:GAlib-mpi,代码行数:12,代码来源:GAScaling.C

示例3: RecvPopulation

// This assumes that the original population contains at least one individual
// from which to grow.  If it does not, the data in the buffer will be ignored.
int
RecvPopulation(GAPopulation& pop) {
  int status = 0;
  int psize = 0;
  status = pvm_upkint(&psize, 1, 1);
  pop.size(psize);
  for(int i=0; i<pop.size() && status>=0; i++)
    status = UnpackIndividual(pop.individual(i));
  return status;
}
开发者ID:distanceModling,项目名称:GAlib,代码行数:12,代码来源:genome.C

示例4: SendPopulation

// This should eventually use a genome member function rather than an external.
// When we pack/unpack a population we also stuff its statistics.
int
SendPopulation(int toid, const GAPopulation& pop) {
  int status = 0;
  int psize = pop.size();
  status = pvm_initsend(PvmDataDefault);
  status = pvm_pkint(&psize, 1, 1);
  for(int i=0; i<pop.size() && status>=0; i++)
    status = PackIndividual(pop.individual(i));
  status = pvm_send(toid, MSG_INCOMING_POPULATION);
  return status;
}
开发者ID:distanceModling,项目名称:GAlib,代码行数:13,代码来源:genome.C

示例5: initGA

void Evolver::initGA(float pMutation, int popSize, GABoolean elitist) {
    GAPopulation pop;
    for (; popSize > 0; --popSize) {
        try {
            Composition *c = new Composition();
            SampleBank::getInstance().initComposition(*c);
            pop.add(c);
        } catch (std::bad_alloc & e) {
            throw std::runtime_error("couldn't alloc new composition");
        }
    }
    initGA(pMutation, elitist, 0, pop);
}
开发者ID:mkb218,项目名称:nynex,代码行数:13,代码来源:evolver.cpp

示例6: GAErr

// This is an implementation of the most basic form of power scaling, where the
// fitness is a function of the objective score raised to some power.  Negative
// objective scores are not allowed.  If we get one, we post an error and set
// all of the fitness scores to zero.
void 
GAPowerLawScaling::evaluate(const GAPopulation & p) {
  for(int i=0; i<p.size(); i++){
    double f = p.individual(i).score();
    if(f < 0.0){
      GAErr(GA_LOC, className(), "evaluate", gaErrPowerNegFitness);
      for(int ii=0; ii<p.size(); ii++)
	p.individual(ii).fitness(0.0);
      return;
    }
    f = pow(f,(double)k);
    p.individual(i).fitness((float)f);       // might lose information here!
  }
}
开发者ID:B0RJA,项目名称:GAlib-mpi,代码行数:18,代码来源:GAScaling.C

示例7: stats

GAGeneticAlgorithm::GAGeneticAlgorithm(const GAPopulation& p) : 
stats(), params() {
  pop = new GAPopulation(p);
  pop->geneticAlgorithm(*this);

  ud = nullptr;
  cf = GAGeneticAlgorithm::DEFAULT_TERMINATOR;

  d_seed = gaDefSeed;
  params.add(gaNseed, gaSNseed, GAParameter::INT, &d_seed);

  minmax = gaDefMiniMaxi;
  params.add(gaNminimaxi, gaSNminimaxi, GAParameter::INT, &minmax);
  ngen = gaDefNumGen;
  params.add(gaNnGenerations, gaSNnGenerations, GAParameter::INT, &ngen);
  nconv = gaDefNConv; stats.nConvergence(nconv);
  params.add(gaNnConvergence, gaSNnConvergence, GAParameter::INT, &nconv);
  pconv = gaDefPConv;
  params.add(gaNpConvergence, gaSNpConvergence, GAParameter::FLOAT, &pconv);
  pcross = gaDefPCross;
  params.add(gaNpCrossover, gaSNpCrossover, GAParameter::FLOAT, &pcross);
  pmut = gaDefPMut;
  params.add(gaNpMutation, gaSNpMutation, GAParameter::FLOAT, &pmut);
  int psize = pop->size();
  params.add(gaNpopulationSize, gaSNpopulationSize, GAParameter::INT, &psize);

  stats.scoreFrequency(gaDefScoreFrequency1);
  params.add(gaNscoreFrequency, gaSNscoreFrequency,
	     GAParameter::INT, &gaDefScoreFrequency1);
  stats.flushFrequency(gaDefFlushFrequency);
  params.add(gaNflushFrequency, gaSNflushFrequency,
	     GAParameter::INT, &gaDefFlushFrequency);
  stats.recordDiversity(gaDefDivFlag);
  params.add(gaNrecordDiversity, gaSNrecordDiversity, 
	     GAParameter::INT, &gaDefDivFlag);
  stats.scoreFilename(gaDefScoreFilename);
  params.add(gaNscoreFilename, gaSNscoreFilename, 
	     GAParameter::STRING, gaDefScoreFilename);
  stats.selectScores(gaDefSelectScores);
  params.add(gaNselectScores, gaSNselectScores, 
	     GAParameter::INT, &gaDefSelectScores);
  stats.nBestGenomes(p.individual(0), gaDefNumBestGenomes);
  params.add(gaNnBestGenomes, gaSNnBestGenomes,
	     GAParameter::INT, &gaDefNumBestGenomes);

  scross = p.individual(0).sexual();
  across = p.individual(0).asexual();
}
开发者ID:dbremner,项目名称:galib,代码行数:48,代码来源:GABaseGA.C

示例8:

// Set the score info to the appropriate values.  Update the score count.
void
GAStatistics::setScore(const GAPopulation& pop){ 
  aveCur = pop.ave();
  maxCur = pop.max();
  minCur = pop.min();
  devCur = pop.dev();
  divCur = ((dodiv == gaTrue) ? pop.div() : (float)-1.0);

  if(Nscrs == 0) return;
  gen[nscrs] = curgen;
  aveScore[nscrs] = aveCur;
  maxScore[nscrs] = maxCur;
  minScore[nscrs] = minCur;
  devScore[nscrs] = devCur;
  divScore[nscrs] = divCur;
  nscrs++;
}
开发者ID:boogerlad,项目名称:pngwolf,代码行数:18,代码来源:GAStatistics.C

示例9: GAGeneticAlgorithm

GADemeGA::GADemeGA(const GAPopulation& p) : GAGeneticAlgorithm(p) {
  if(p.size() < 1) {
    GAErr(GA_LOC, className(), "GADemeGA(GAPopulation&)", gaErrNoIndividuals);
    pop = 0; nrepl = 0; tmppop = 0; pstats = 0;
  }
  else {
    npop = gaDefNPop;
    params.add(gaNnPopulations, gaSNnPopulations, GAParameter::INT, &npop);
    nmig = gaDefNMig;
    params.add(gaNnMigration, gaSNnMigration, GAParameter::INT, &nmig);
    unsigned int nr = pop->size()/2;

    nrepl = new int [npop];
    deme = new GAPopulation* [npop];
    pstats = new GAStatistics [npop];
    tmppop = new GAPopulation(p.individual(0), nr);
    
    for(unsigned int i=0; i<npop; i++) {
      nrepl[i] = nr;
      deme[i] = new GAPopulation(p);
    }
  }
}
开发者ID:boogerlad,项目名称:pngwolf,代码行数:23,代码来源:GADemeGA.C

示例10: main

int main(int argc, const char * argv[])
{
    srand((unsigned)time(NULL));
    
    printf("Running Genetic Algorithm...\n");
    printf("Target Genes: %s\n", kTargetGenes.c_str());
    printf("Population Size: %d\n", kPopulationSize);
    printf("Elitism: %s\n", (kElitismEnabled ? "true" : "false"));
    printf("Elitism Percentage: %d%%\n", kElitismPercentage);
    printf("Mutation Probability: %d%%\n", kMutationProbability);
    printf("Crossover Probability: %d%%\n\n", kCrossoverProbability);
    
    GAPopulation population = GAPopulation(kPopulationSize, kTargetGenes);
    population.elitismEnabled = kElitismEnabled;
    population.tournamentSize = kTournamentSize;
    population.elitismPercentage = PERCENTAGE(kElitismPercentage);
    population.mutationProbability = PERCENTAGE(kMutationProbability);
    population.crossoverProbability = PERCENTAGE(kCrossoverProbability);
    population.selectionType = GAPopulationSelectionType::GAPopulationSelectionTypeTournament;
    population.crossoverType = GAPopulationCrossoverType::GAPopulationCrossoverTypeOnePoint;
    population.evolve();
    
    return 0;
}
开发者ID:MotivatedCreation,项目名称:Algorithms,代码行数:24,代码来源:main.cpp

示例11: if

void 
GALinearScaling::evaluate(const GAPopulation & p) {
// Here we calculate the slope and intercept using the multiplier and objective
// score ranges...

  double pmin = p.min();
  double pmax = p.max();
  double pave = p.ave();

  double delta, a, b;
  if(pave == pmax){	// no scaling - population is all the same
    a = 1.0; 
    b = 0.0;
  }
  else if(pmin > ((double)c * pave - pmax)/((double)c - 1.0)){
    delta = pmax - pave;
    a = ((double)c - 1.0) * pave / delta;
    b = pave * (pmax - (double)c * pave) / delta;
  }
  else{				// stretch to make min be 0
    delta = pave - pmin;
    a = pave / delta;
    b = -pmin * pave / delta;
  }

// and now we calculate the scaled scaled values.  Negative scores are not
// allowed with this kind of scaling, so check for negative values.  If we get
// a negative value, dump an error message then set all of the scores to 0.

  for(int i=0; i<p.size(); i++){
    double f = p.individual(i).score();
    if(f < 0.0){
      GAErr(GA_LOC, className(), "evaluate", gaErrNegFitness);
      for(int ii=0; ii<p.size(); ii++)
	p.individual(ii).fitness(0.0);
      return;
    }
    f = f * a + b;
    if(f < 0) f = 0.0;	// truncate if necessary (only due to roundoff error)
    p.individual(i).fitness((float)f);       // might lose information here!
  }
}
开发者ID:B0RJA,项目名称:GAlib-mpi,代码行数:42,代码来源:GAScaling.C

示例12: PopulationEvaluator

//   This population evaluator is the administrator for the parallelization.
// It looks around to see when slaves are available to evaluate a genome.  As
// soon as a slave is available and a genome needs to be evaluated, this 
// routine sends it off.  When a slave is finished, it posts a message to 
// say so and this routine gets the message and grabs the results from the 
// slave that posted the message.
//   An index of -1 means that the slave has no assignment.  The first int in 
// the stream of stuff is always the ID of the slave (0-nslaves) that is 
// sending the information.  After that it is either nothing (the slave just 
// reported that it is ready for another genome) or it is a float (the score 
// of the genome that was assigned to the slave).
void 
PopulationEvaluator(GAPopulation& pop) {
  PVMDataPtr data = (PVMDataPtr)pop.userData();
  int* index = new int [data->nreq];
  int done = 0, outstanding = 0, next = 0;
  int bufid, status, bytes, msgtag, tid, who;

  while(!done) {
// If we have a genome that needs to be evaluated and one of the slaves is
// ready to evaluate it, send the genome to the slave.
    if(next < pop.size() && (bufid=pvm_nrecv(-1, MSG_READY)) != 0) {
      if(bufid > 0) {
	pvm_bufinfo(bufid, &bytes, &msgtag, &tid);
	status = SendGenomeData(pop.individual(next), tid);
	if(status >= 0) {
	  if((who = id2idx(tid, *data)) >= 0) {
	    index[who] = next; next++;
	    outstanding++;
	  }
	  else {
	    cerr << "PopEval: bogus tid mapping: " << tid << "\n";
	  }
	}
	else {
	  cerr << "PopEval: error sending data to: " << tid;
	  cerr << "  error code is: " << status << "\n";
	}
      }
      else {
	cerr << "PopEval: error from pvm_nrecv: " << bufid << "\n";
      }
    }

// If we have any genomes waiting for their evaluation and any slaves have 
// posted a message stating that they have a finished score ready for us, get
// the score from the slave and stuff it into the appropriate genome.
    if(outstanding > 0 && (bufid=pvm_nrecv(-1, MSG_GENOME_SCORE)) != 0) {
      if(bufid > 0) {
	pvm_bufinfo(bufid, &bytes, &msgtag, &tid);
	if((who = id2idx(tid, *data)) >= 0) {
	  if(index[who] >= 0) {
	    status = RecvGenomeScore(pop.individual(index[who]));
	    if(status >= 0) {
	      index[who] = -1;
	      outstanding--;
	    }
	    else {
	      cerr << "PopEval: error receiving score from: " << tid;
	      cerr << "  error code is: " << status << "\n";
	    }
	  }
	  else {
	    cerr << "PopEval: index conflict from tid " << tid << "\n";
	  }
	}
	else {
	  cerr << "PopEval: bogus tid mapping: " << tid << "\n";
	}
      }
      else {
	cerr << "PopEval: error from pvm_nrecv: " << bufid << "\n";
      }
    }

    if(next == pop.size() && outstanding == 0) done = 1;
    if(next > pop.size()) {
      cerr << "bogus value for next: " << next;
      cerr << "  popsize is: " << pop.size() << "\n";
    }
  }

  delete [] index;
}
开发者ID:distanceModling,项目名称:GAlib,代码行数:84,代码来源:genome.C

示例13: PopulationInitializer

// The population initializer invokes the genomes' initializers just like the
// standard population initializer, but here we farm out the genomes to the
// slaves before invoking the initialization.  Farm out the genomes and give
// the slaves the initialize command rather than the evaluate command.
void
PopulationInitializer(GAPopulation& pop) {
  PVMDataPtr data = (PVMDataPtr)pop.userData();
  int* index = new int [data->nreq];
  int done = 0, outstanding = 0, next = 0;
  int bufid, status, bytes, msgtag, tid, who;

  while(!done) {
// If we have a genome that needs to be initialized and one of the slaves is
// available, then ask the slave to configure a genome and send us back the
// configured, initialized genome.
    if(next < pop.size() && (bufid=pvm_nrecv(-1, MSG_READY)) != 0) {
      if(bufid > 0) {
	status = pvm_bufinfo(bufid, &bytes, &msgtag, &tid);
	status = SendGenomeInitialize(pop.individual(next), tid);
	if(status >= 0) {
	  if((who = id2idx(tid, *data)) >= 0) {
	    index[who] = next; next++;
	    outstanding++;
	  }
	  else {
	    cerr << "PopInit: bogus tid mapping: " << tid << "\n";
	  }
	}
	else {
	  cerr << "PopInit: error sending initialize command to: " << tid;
	  cerr << "  genome " << next << " will be inited by next slave\n";
	  cerr << "  error code is: " << status << "\n";
	}
      }
      else {
	cerr << "PopInit: error from pvm_nrecv: " << bufid << "\n";
      }
    }

// If we have requests for initialization outstanding and a slave has posted
// a message stating that it will provide genome data, then get the data from
// the slave and stuff it into the appropriate genome in the population.
    if(outstanding > 0 && (bufid=pvm_nrecv(-1, MSG_GENOME_DATA)) != 0) {
      if(bufid > 0) {
	status = pvm_bufinfo(bufid, &bytes, &msgtag, &tid);
	if((who = id2idx(tid, *data)) >= 0) {
	  if(index[who] >= 0) {
	    status = RecvGenomeData(pop.individual(index[who]));
	    if(status >= 0) {
	      index[who] = -1;
	      outstanding--;
	    }
	    else {
	      cerr << "PopInit: error receiving data from: " << tid;
	      cerr << "  error code is: " << status << "\n";
	    }
	  }
	  else {
	    cerr << "PopInit: index conflict from tid " << tid << "\n";
	  }
	}
	else {
	  cerr << "PopInit: bogus tid mapping: " << tid << "\n";
	}
      }
      else {
	cerr << "PopInit: error from pvm_nrecv: " << bufid << "\n";
      }
    }

    if(next == pop.size() && outstanding == 0) done = 1;
    if(next > pop.size()) {
      cerr << "bogus value for next: " << next;
      cerr << "  popsize is: " << pop.size() << "\n";
    }
  }

  delete [] index;
}
开发者ID:distanceModling,项目名称:GAlib,代码行数:79,代码来源:genome.C

示例14: memset

// Reset the GA's statistics based on the population.  To do this right you
// should initialize the population before you pass it to this routine.  If you
// don't, the stats will be based on a non-initialized population.
void
GAStatistics::reset(const GAPopulation & pop){
  curgen = 0;
  numsel = numcro = nummut = numrep = numeval = numpeval = 0;

  memset(gen, 0, Nscrs*sizeof(int));
  memset(aveScore, 0, Nscrs*sizeof(float));
  memset(maxScore, 0, Nscrs*sizeof(float));
  memset(minScore, 0, Nscrs*sizeof(float));
  memset(devScore, 0, Nscrs*sizeof(float));
  memset(divScore, 0, Nscrs*sizeof(float));
  nscrs = 0;
  setScore(pop);
  if(Nscrs > 0) flushScores();

  memset(cscore, 0, Nconv*sizeof(float));
  nconv = 0;			// should set to -1 then call setConv
  cscore[0] = 
    ((pop.order() == GAPopulation::HIGH_IS_BEST) ? pop.max() : pop.min());
//  cscore[0] = pop.max();
//  setConvergence(maxScore[0]);

  updateBestIndividual(pop, gaTrue);
  aveCur = aveInit = pop.ave();
  maxCur = maxInit = maxever = pop.max();
  minCur = minInit = minever = pop.min();
  devCur = devInit = pop.dev();
  divCur = divInit = ((dodiv == gaTrue) ? pop.div() : (float)-1.0);

  on = pop.ave();
  offmax = pop.max();
  offmin = pop.min();
  numpeval = pop.nevals();
  for(int i=0; i<pop.size(); i++)
    numeval += pop.individual(i).nevals();
}
开发者ID:boogerlad,项目名称:pngwolf,代码行数:39,代码来源:GAStatistics.C

示例15: setConvergence

// Use this method to update the statistics to account for the current
// population.  This routine increments the generation counter and assumes that
// the population that gets passed is the current population.
//   If we are supposed to flush the scores, then we dump them to the specified
// file.  If no flushing frequency has been specified then we don't record.
void
GAStatistics::update(const GAPopulation & pop){
  ++curgen;			// must do this first so no divide-by-zero
  if(scoreFreq > 0 && (curgen % scoreFreq == 0)) setScore(pop);
  if(Nscrs > 0 && nscrs >= Nscrs) flushScores();
  maxever = (pop.max() > maxever) ? pop.max() : maxever;
  minever = (pop.min() < minever) ? pop.min() : minever;
  float tmpval;
  tmpval = (on*(curgen-1) + pop.ave()) / curgen;
  on = tmpval;
  tmpval = (offmax*(curgen-1) + pop.max()) / curgen;
  offmax = tmpval;
  tmpval = (offmin*(curgen-1) + pop.min()) / curgen;
  offmin = tmpval;
  setConvergence((pop.order() == GAPopulation::HIGH_IS_BEST) ?
		 pop.max() : pop.min());
  updateBestIndividual(pop);
  numpeval = pop.nevals();
}
开发者ID:boogerlad,项目名称:pngwolf,代码行数:24,代码来源:GAStatistics.C


注:本文中的GAPopulation类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。