当前位置: 首页>>代码示例>>C++>>正文


C++ Func::gpu_threads方法代码示例

本文整理汇总了C++中Func::gpu_threads方法的典型用法代码示例。如果您正苦于以下问题:C++ Func::gpu_threads方法的具体用法?C++ Func::gpu_threads怎么用?C++ Func::gpu_threads使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Func的用法示例。


在下文中一共展示了Func::gpu_threads方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: main

int main(int argc, char **argv) {
    if (!get_jit_target_from_environment().has_gpu_feature()) {
        printf("Not running test because no gpu target enabled\n");
        return 0;
    }

    {
        Func f;
        Var x, y, z;

        // Construct a Func with lots of potential race conditions, and
        // then run it in thread blocks on the gpu.

        f(x, y) = x + 100 * y;

        const int passes = 10;
        for (int i = 0; i < passes; i++) {
            RDom rx(0, 10);
            // Flip each row, using spots 10-19 as temporary storage
            f(rx + 10, y) = f(9 - rx, y);
            f(rx, y) = f(rx + 10, y);
            // Flip each column the same way
            RDom ry(0, 8);
            f(x, ry + 8) = f(x, 7 - ry);
            f(x, ry) = f(x, ry + 8);
        }

        Func g;
        g(x, y) = f(0, 0)+ f(9, 7);

        g.gpu_tile(x, y, 16, 8);
        f.compute_at(g, Var::gpu_blocks());

        for (int i = 0; i < passes; i++) {
            f.update(i*4 + 0).gpu_threads(y);
            f.update(i*4 + 1).gpu_threads(y);
            f.update(i*4 + 2).gpu_threads(x);
            f.update(i*4 + 3).gpu_threads(x);
        }

        Image<int> out = g.realize(100, 100);
        for (int y = 0; y < out.height(); y++) {
            for (int x = 0; x < out.width(); x++) {
                int correct = 7*100 + 9;
                if (out(x, y) != correct) {
                    printf("out(%d, %d) = %d instead of %d\n",
                           x, y, out(x, y), correct);
                    return -1;
                }
            }
        }

    }

    {
        // Construct a Func with undef stages, then run it in thread
        // blocks and make sure the right number of syncthreads are
        // added.

        Func f;
        Var x, y, z;
        f(x, y) = undef<int>();
        f(x, y) += x + 100 * y;
        // This next line is dubious, because it entirely masks the
        // effect of the previous definition. If you add an undefined
        // value to the previous def, then Halide can evaluate this to
        // whatever it likes. Currently we'll just elide this update
        // definition.
        f(x, y) += undef<int>();
        f(x, y) += y * 100 + x;

        Func g;
        g(x, y) = f(0, 0) + f(7, 7);

        g.gpu_tile(x, y, 8, 8);
        f.compute_at(g, Var::gpu_blocks());

        f.gpu_threads(x, y);
        f.update(0).gpu_threads(x, y);
        f.update(1).gpu_threads(x, y);
        f.update(2).gpu_threads(x, y);

        // There should be two thread barriers: one in between the
        // non-undef definitions, and one between f and g.
        g.add_custom_lowering_pass(new CheckBarrierCount(2));

        Image<int> out = g.realize(100, 100);
    }

    printf("Success!\n");
    return 0;
}
开发者ID:josephsieh,项目名称:Halide,代码行数:92,代码来源:gpu_thread_barrier.cpp

示例2: schedule_for_gpu

    // Now a schedule that uses CUDA or OpenCL.
    void schedule_for_gpu() {
        // We make the decision about whether to use the GPU for each
        // Func independently. If you have one Func computed on the
        // CPU, and the next computed on the GPU, Halide will do the
        // copy-to-gpu under the hood. For this pipeline, there's no
        // reason to use the CPU for any of the stages. Halide will
        // copy the input image to the GPU the first time we run the
        // pipeline, and leave it there to reuse on subsequent runs.

        // As before, we'll compute the LUT once at the start of the
        // pipeline.
        lut.compute_root();

        // Let's compute the look-up-table using the GPU in 16-wide
        // one-dimensional thread blocks. First we split the index
        // into blocks of size 16:
        Var block, thread;
        lut.split(i, block, thread, 16);
        // Then we tell cuda that our Vars 'block' and 'thread'
        // correspond to CUDA's notions of blocks and threads, or
        // OpenCL's notions of thread groups and threads.
        lut.gpu_blocks(block)
           .gpu_threads(thread);

        // This is a very common scheduling pattern on the GPU, so
        // there's a shorthand for it:

        // lut.gpu_tile(i, 16);

        // Func::gpu_tile method is similar to Func::tile, except that
        // it also specifies that the tile coordinates correspond to
        // GPU blocks, and the coordinates within each tile correspond
        // to GPU threads.

        // Compute color channels innermost. Promise that there will
        // be three of them and unroll across them.
        curved.reorder(c, x, y)
              .bound(c, 0, 3)
              .unroll(c);

        // Compute curved in 2D 8x8 tiles using the GPU.
        curved.gpu_tile(x, y, 8, 8);

        // This is equivalent to:
        // curved.tile(x, y, xo, yo, xi, yi, 8, 8)
        //       .gpu_blocks(xo, yo)
        //       .gpu_threads(xi, yi);

        // We'll leave sharpen as inlined into curved.

        // Compute the padded input as needed per GPU block, storing the
        // intermediate result in shared memory. Var::gpu_blocks, and
        // Var::gpu_threads exist to help you schedule producers within
        // GPU threads and blocks.
        padded.compute_at(curved, Var::gpu_blocks());

        // Use the GPU threads for the x and y coordinates of the
        // padded input.
        padded.gpu_threads(x, y);

        // JIT-compile the pipeline for the GPU. CUDA or OpenCL are
        // not enabled by default. We have to construct a Target
        // object, enable one of them, and then pass that target
        // object to compile_jit. Otherwise your CPU will very slowly
        // pretend it's a GPU, and use one thread per output pixel.

        // Start with a target suitable for the machine you're running
        // this on.
        Target target = get_host_target();

        // Then enable OpenCL or CUDA.

        // We'll enable OpenCL here, because it tends to give better
        // performance than CUDA, even with NVidia's drivers, because
        // NVidia's open source LLVM backend doesn't seem to do all
        // the same optimizations their proprietary compiler does.
        target.features |= Target::OpenCL;

        // Uncomment the next line and comment out the line above to
        // try CUDA instead.
        // target.features |= Target::CUDA;

        // If you want to see all of the OpenCL or CUDA API calls done
        // by the pipeline, you can also enable the GPUDebug
        // flag. This is helpful for figuring out which stages are
        // slow, or when CPU -> GPU copies happen. It hurts
        // performance though, so we'll leave it commented out.
        //target.features |= Target::GPUDebug;

        curved.compile_jit(target);
    }
开发者ID:kree-colemcalughlin,项目名称:Halide,代码行数:92,代码来源:lesson_12_using_the_gpu.cpp

示例3: schedule_for_gpu

    // Now a schedule that uses CUDA or OpenCL.
    void schedule_for_gpu() {
        // We make the decision about whether to use the GPU for each
        // Func independently. If you have one Func computed on the
        // CPU, and the next computed on the GPU, Halide will do the
        // copy-to-gpu under the hood. For this pipeline, there's no
        // reason to use the CPU for any of the stages. Halide will
        // copy the input image to the GPU the first time we run the
        // pipeline, and leave it there to reuse on subsequent runs.

        // As before, we'll compute the LUT once at the start of the
        // pipeline.
        lut.compute_root();

        // Let's compute the look-up-table using the GPU in 16-wide
        // one-dimensional thread blocks. First we split the index
        // into blocks of size 16:
        Var block, thread;
        lut.split(i, block, thread, 16);
        // Then we tell cuda that our Vars 'block' and 'thread'
        // correspond to CUDA's notions of blocks and threads, or
        // OpenCL's notions of thread groups and threads.
        lut.gpu_blocks(block)
           .gpu_threads(thread);

        // This is a very common scheduling pattern on the GPU, so
        // there's a shorthand for it:

        // lut.gpu_tile(i, block, thread, 16);

        // Func::gpu_tile behaves the same as Func::tile, except that
        // it also specifies that the tile coordinates correspond to
        // GPU blocks, and the coordinates within each tile correspond
        // to GPU threads.

        // Compute color channels innermost. Promise that there will
        // be three of them and unroll across them.
        curved.reorder(c, x, y)
              .bound(c, 0, 3)
              .unroll(c);

        // Compute curved in 2D 8x8 tiles using the GPU.
        curved.gpu_tile(x, y, xo, yo, xi, yi, 8, 8);

        // This is equivalent to:
        // curved.tile(x, y, xo, yo, xi, yi, 8, 8)
        //       .gpu_blocks(xo, yo)
        //       .gpu_threads(xi, yi);

        // We'll leave sharpen as inlined into curved.

        // Compute the padded input as needed per GPU block, storing
        // the intermediate result in shared memory. In the schedule
        // above xo corresponds to GPU blocks.
        padded.compute_at(curved, xo);

        // Use the GPU threads for the x and y coordinates of the
        // padded input.
        padded.gpu_threads(x, y);

        // JIT-compile the pipeline for the GPU. CUDA, OpenCL, or
        // Metal are not enabled by default. We have to construct a
        // Target object, enable one of them, and then pass that
        // target object to compile_jit. Otherwise your CPU will very
        // slowly pretend it's a GPU, and use one thread per output
        // pixel.

        // Start with a target suitable for the machine you're running
        // this on.
        Target target = get_host_target();

        // Then enable OpenCL or Metal, depending on which platform
        // we're on. OS X doesn't update its OpenCL drivers, so they
        // tend to be broken. CUDA would also be a fine choice on
        // machines with NVidia GPUs.
        if (target.os == Target::OSX) {
            target.set_feature(Target::Metal);
        } else {
            target.set_feature(Target::OpenCL);
        }

        // Uncomment the next line and comment out the lines above to
        // try CUDA instead.
        // target.set_feature(Target::CUDA);

        // If you want to see all of the OpenCL, Metal, or CUDA API
        // calls done by the pipeline, you can also enable the Debug
        // flag. This is helpful for figuring out which stages are
        // slow, or when CPU -> GPU copies happen. It hurts
        // performance though, so we'll leave it commented out.
        // target.set_feature(Target::Debug);

        curved.compile_jit(target);
    }
开发者ID:darkbuck,项目名称:Halide,代码行数:94,代码来源:lesson_12_using_the_gpu.cpp


注:本文中的Func::gpu_threads方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。