当前位置: 首页>>代码示例>>C++>>正文


C++ Func::compileToFile方法代码示例

本文整理汇总了C++中Func::compileToFile方法的典型用法代码示例。如果您正苦于以下问题:C++ Func::compileToFile方法的具体用法?C++ Func::compileToFile怎么用?C++ Func::compileToFile使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Func的用法示例。


在下文中一共展示了Func::compileToFile方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: main

int main(int argc, char **argv) {
    // The camera pipe is specialized on the 2592x1968 images that
    // come in, so we'll just use an image instead of a uniform image.
    Image<int16_t> input(2592, 1968);
    UniformImage matrix_3200(Float(32), 2, "m3200"), matrix_7000(Float(32), 2, "m7000");
    Uniform<float> color_temp("color_temp", 3200.0f);
    Uniform<float> gamma("gamma", 1.8f);
    Uniform<float> contrast("contrast", 10.0f);

    // shift things inwards to give us enough padding on the
    // boundaries so that we don't need to check bounds. We're going
    // to make a 2560x1920 output image, just like the FCam pipe, so
    // shift by 16, 12
    Func shifted;
    shifted(x, y) = input(clamp(x+16, 0, input.width()-1), clamp(y+12, 0, input.height()-1)); 
    
    // Parameterized output type, because LLVM PTX (GPU) backend does not
    // currently allow 8-bit computations
    int bit_width = atoi(argv[1]);
    Type result_type = UInt(bit_width);
    
    // Pick a schedule   
    schedule = atoi(argv[2]);
    
    // Build the pipeline
    Func processed = process(shifted, result_type, matrix_3200, matrix_7000, color_temp, gamma, contrast);

    //string s = processed.serialize();
    //printf("%s\n", s.c_str());

    // In C++-11, this can be done as a simple initializer_list {color_temp,gamma,etc.} in place.
    Arg args[] = {color_temp, gamma, contrast, input, matrix_3200, matrix_7000};
    processed.compileToFile("curved", std::vector<Arg>(args, args+6));

    return 0;
}
开发者ID:iitaku,项目名称:Halide,代码行数:36,代码来源:camera_pipe.cpp

示例2: main

int main(int argc, char **argv) {
    if (argc < 2) {
        printf("Spatial sigma is a compile-time parameter, please provide it as an argument.\n"
               "(llvm's ptx backend doesn't handle integer mods by non-consts yet)\n");
        return 0;
    }

    UniformImage input(Float(32), 2);
    Uniform<float> r_sigma;
    int s_sigma = atoi(argv[1]);
    Var x, y, z, c;

    // Add a boundary condition 
    Func clamped;
    clamped(x, y) = input(clamp(x, 0, input.width()-1),
                          clamp(y, 0, input.height()-1));

    // Construct the bilateral grid 
    RDom r(0, s_sigma, 0, s_sigma);
    Expr val = clamped(x * s_sigma + r.x - s_sigma/2, y * s_sigma + r.y - s_sigma/2);
    val = clamp(val, 0.0f, 1.0f);
    Expr zi = cast<int>(val * (1.0f/r_sigma) + 0.5f);
    Func grid;
    grid(x, y, zi, c) += select(c == 0, val, 1.0f);

    // Blur the grid using a five-tap filter
    Func blurx, blury, blurz;
    blurx(x, y, z) = grid(x-2, y, z) + grid(x-1, y, z)*4 + grid(x, y, z)*6 + grid(x+1, y, z)*4 + grid(x+2, y, z);
    blury(x, y, z) = blurx(x, y-2, z) + blurx(x, y-1, z)*4 + blurx(x, y, z)*6 + blurx(x, y+1, z)*4 + blurx(x, y+2, z);
    blurz(x, y, z) = blury(x, y, z-2) + blury(x, y, z-1)*4 + blury(x, y, z)*6 + blury(x, y, z+1)*4 + blury(x, y, z+2);

    // Take trilinear samples to compute the output
    val = clamp(clamped(x, y), 0.0f, 1.0f);
    Expr zv = val * (1.0f/r_sigma);
    zi = cast<int>(zv);
    Expr zf = zv - zi;
    Expr xf = cast<float>(x % s_sigma) / s_sigma;
    Expr yf = cast<float>(y % s_sigma) / s_sigma;
    Expr xi = x/s_sigma;
    Expr yi = y/s_sigma;
    Func interpolated;
    interpolated(x, y) = 
        lerp(lerp(lerp(blurz(xi, yi, zi), blurz(xi+1, yi, zi), xf),
                  lerp(blurz(xi, yi+1, zi), blurz(xi+1, yi+1, zi), xf), yf),
             lerp(lerp(blurz(xi, yi, zi+1), blurz(xi+1, yi, zi+1), xf),
                  lerp(blurz(xi, yi+1, zi+1), blurz(xi+1, yi+1, zi+1), xf), yf), zf);

    // Normalize
    Func smoothed;
    smoothed(x, y) = interpolated(x, y, 0)/interpolated(x, y, 1);

    #ifndef USE_GPU
    // Best schedule for CPU
    printf("Compiling for CPU\n");
    grid.root().parallel(z);
    grid.update().transpose(y, c).transpose(x, c).parallel(y);
    blurx.root().parallel(z).vectorize(x, 4);
    blury.root().parallel(z).vectorize(x, 4);
    blurz.root().parallel(z).vectorize(x, 4);
    smoothed.root().parallel(y).vectorize(x, 4); 
    #else    

    printf("Compiling for GPU");
    Var gridz = grid.arg(2);
    grid.transpose(y, gridz).transpose(x, gridz).transpose(y, c).transpose(x, c)
        .root().cudaTile(x, y, 16, 16);
    grid.update().transpose(y, c).transpose(x, c).transpose(i, c).transpose(j, c)
        .root().cudaTile(x, y, 16, 16);
    c = blurx.arg(3);
    blurx.transpose(y, z).transpose(x, z).transpose(y, c).transpose(x, c)
        .root().cudaTile(x, y, 8, 8);
    
    c = blury.arg(3);
    blury.transpose(y, z).transpose(x, z).transpose(y, c).transpose(x, c)
        .root().cudaTile(x, y, 8, 8);

    c = blurz.arg(3);
    blurz.transpose(y, z).transpose(x, z).transpose(y, c).transpose(x, c)
        .root().cudaTile(x, y, 8, 8);
    
    smoothed.root().cudaTile(x, y, s_sigma, s_sigma);
    #endif

    smoothed.compileToFile("bilateral_grid", {r_sigma, input});

    // Compared to Sylvain Paris' implementation from his webpage (on
    // which this is based), for filter params s_sigma 0.1, on a 4 megapixel
    // input, on a four core x86 (2 socket core2 mac pro)
    // Filter s_sigma: 2      4       8       16      32
    // Paris (ms):     5350   1345    472     245     184
    // Us (ms):        383    142     77      62      65
    // Speedup:        14     9.5     6.1     3.9     2.8

    // Our schedule and inlining are roughly the same as his, so the
    // gain is all down to vectorizing and parallelizing. In general
    // for larger blurs our win shrinks to roughly the number of
    // cores, as the stages we don't vectorize as well dominate (we
    // don't vectorize them well because they do gathers and scatters,
    // which don't work well on x86).  For smaller blurs, our win
    // grows, because the stages that we vectorize take up all the
//.........这里部分代码省略.........
开发者ID:autumnm1981,项目名称:Halide,代码行数:101,代码来源:bilateral_grid.cpp

示例3: main


//.........这里部分代码省略.........
            if (j > 0) gPyramid[j].root().parallel(k);
            outGPyramid[j].root().parallel(y);          
        }
        break;

    case 100:
        // output stage only on GPU
        output.root().split(y, by, ty, 32).split(x, bx, tx, 32)
            .transpose(bx, ty).parallel(by).parallel(ty).parallel(bx).parallel(tx);
        for (int j = 0; j < J; j++) {
            inGPyramid[j].root();
            gPyramid[j].root();
            outGPyramid[j].root();
            if (j == J-1) break;
            lPyramid[j].root();
            outLPyramid[j].root();
        }
        break;
    case 101:
        // all root on GPU, tiny blocks to prevent accidental bounds explosion
        output.root().split(y, by, ty, 2).split(x, bx, tx, 2)
            .transpose(bx, ty).parallel(by).parallel(ty).parallel(bx).parallel(tx);
        for (int j = 0; j < J; j++) {
            inGPyramid[j].root()
                .split(y, by, ty, 2).split(x, bx, tx, 2)
                .transpose(bx, ty).parallel(by).parallel(ty).parallel(bx).parallel(tx);
            gPyramid[j].root()
                .split(y, by, ty, 2).split(x, bx, tx, 2)
                .transpose(bx, ty).parallel(by).parallel(ty).parallel(bx).parallel(tx);
            outGPyramid[j].root()
                .split(y, by, ty, 2).split(x, bx, tx, 2)
                .transpose(bx, ty).parallel(by).parallel(ty).parallel(bx).parallel(tx);
            if (j == J-1) break;
            lPyramid[j].root()
                .split(y, by, ty, 2).split(x, bx, tx, 2)
                .transpose(bx, ty).parallel(by).parallel(ty).parallel(bx).parallel(tx);
            outLPyramid[j].root()
                .split(y, by, ty, 2).split(x, bx, tx, 2)
                .transpose(bx, ty).parallel(by).parallel(ty).parallel(bx).parallel(tx);
        }
        break;
    case 102:
        // all root on GPU
        output.root().split(y, by, ty, 32).split(x, bx, tx, 32)
            .transpose(bx, ty).parallel(by).parallel(ty).parallel(bx).parallel(tx);
        for (int j = 0; j < J; j++) {
            int blockw = 32, blockh = 32;
            if (j > 3) {
                blockw = 2;
                blockh = 2;
            }
            inGPyramid[j].root()
                .split(y, by, ty, blockh).split(x, bx, tx, blockw)
                .transpose(bx, ty).parallel(by).parallel(ty).parallel(bx).parallel(tx);
            gPyramid[j].root()
                .split(y, by, ty, blockh).split(x, bx, tx, blockw)
                .transpose(bx, ty).parallel(by).parallel(ty).parallel(bx).parallel(tx);
            outGPyramid[j].root()
                .split(y, by, ty, blockh).split(x, bx, tx, blockw)
                .transpose(bx, ty).parallel(by).parallel(ty).parallel(bx).parallel(tx);
            if (j == J-1) break;
            lPyramid[j].root()
                .split(y, by, ty, blockh).split(x, bx, tx, blockw)
                .transpose(bx, ty).parallel(by).parallel(ty).parallel(bx).parallel(tx);
            outLPyramid[j].root()
                .split(y, by, ty, blockh).split(x, bx, tx, blockw)
                .transpose(bx, ty).parallel(by).parallel(ty).parallel(bx).parallel(tx);
        }
        break;
    case 103:

        // most root, but inline laplacian pyramid levels - 49ms on Tesla
        output.root().split(y, by, ty, 32).split(x, bx, tx, 32)
            .transpose(bx, ty).parallel(by).parallel(ty).parallel(bx).parallel(tx);
        for (int j = 0; j < J; j++) {
            int blockw = 32, blockh = 32;
            if (j > 3) {
                blockw = 2;
                blockh = 2;
            }
            inGPyramid[j].root()
                .split(y, by, ty, blockh).split(x, bx, tx, blockw)
                .transpose(bx, ty).parallel(by).parallel(ty).parallel(bx).parallel(tx);
            gPyramid[j].root()
                .split(y, by, ty, blockh).split(x, bx, tx, blockw)
                .transpose(bx, ty).parallel(by).parallel(ty).parallel(bx).parallel(tx);
            outGPyramid[j].root()
                .split(y, by, ty, blockh).split(x, bx, tx, blockw)
                .transpose(bx, ty).parallel(by).parallel(ty).parallel(bx).parallel(tx);
        }
        break;
    default: 
        break;
    }

    output.compileToFile("local_laplacian", {levels, alpha, beta, input});


    return 0;
}
开发者ID:autumnm1981,项目名称:Halide,代码行数:101,代码来源:local_laplacian.cpp


注:本文中的Func::compileToFile方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。