当前位置: 首页>>代码示例>>C++>>正文


C++ FloatArray::beSymVectorFormOfStrain方法代码示例

本文整理汇总了C++中FloatArray::beSymVectorFormOfStrain方法的典型用法代码示例。如果您正苦于以下问题:C++ FloatArray::beSymVectorFormOfStrain方法的具体用法?C++ FloatArray::beSymVectorFormOfStrain怎么用?C++ FloatArray::beSymVectorFormOfStrain使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在FloatArray的用法示例。


在下文中一共展示了FloatArray::beSymVectorFormOfStrain方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: stress

void AbaqusUserMaterial :: giveFirstPKStressVector_3d(FloatArray &answer, GaussPoint *gp,
                                                      const FloatArray &vF, TimeStep *tStep)
{
    AbaqusUserMaterialStatus *ms = static_cast< AbaqusUserMaterialStatus * >( this->giveStatus(gp) );
    /* User-defined material name, left justified. Some internal material models are given names starting with
     * the “ABQ_” character string. To avoid conflict, you should not use “ABQ_” as the leading string for
     * CMNAME. */
    //char cmname[80];

    // Sizes of the tensors.
    int ndi = 3;
    int nshr = 3;

    int ntens = ndi + nshr;
    FloatArray stress(9); // PK1
    FloatArray strainIncrement;

    // compute Green-Lagrange strain
    FloatArray strain;
    FloatArray vS;
    FloatMatrix F, E;
    F.beMatrixForm(vF);
    E.beTProductOf(F, F);
    E.at(1, 1) -= 1.0;
    E.at(2, 2) -= 1.0;
    E.at(3, 3) -= 1.0;
    E.times(0.5);
    strain.beSymVectorFormOfStrain(E);

    strainIncrement.beDifferenceOf(strain, ms->giveStrainVector());
    FloatArray state = ms->giveStateVector();
    FloatMatrix jacobian(9, 9); // dPdF
    int numProperties = this->properties.giveSize();

    // Temperature and increment
    double temp = 0.0, dtemp = 0.0;

    // Times and increment
    double dtime = tStep->giveTimeIncrement();
    ///@todo Check this. I'm just guessing. Maybe intrinsic time instead?
    double time [ 2 ] = {
        tStep->giveTargetTime() - dtime, tStep->giveTargetTime()
    };
    double pnewdt = 1.0; ///@todo Right default value? umat routines may change this (although we ignore it)

    /* Specific elastic strain energy, plastic dissipation, and “creep” dissipation, respectively. These are passed
     * in as the values at the start of the increment and should be updated to the corresponding specific energy
     * values at the end of the increment. They have no effect on the solution, except that they are used for
     * energy output. */
    double sse, spd, scd;

    // Outputs only in a fully coupled thermal-stress analysis:
    double rpl = 0.0; // Volumetric heat generation per unit time at the end of the increment caused by mechanical working of the material.
    FloatArray ddsddt(ntens); // Variation of the stress increments with respect to the temperature.
    FloatArray drplde(ntens); // Variation of RPL with respect to the strain increments.
    double drpldt = 0.0; // Variation of RPL with respect to the temperature.

    /* An array containing the coordinates of this point. These are the current coordinates if geometric
     * nonlinearity is accounted for during the step (see “Procedures: overview,” Section 6.1.1); otherwise,
     * the array contains the original coordinates of the point */
    FloatArray coords;
    gp->giveElement()->computeGlobalCoordinates( coords, gp->giveNaturalCoordinates() ); ///@todo Large deformations?

    /* Rotation increment matrix. This matrix represents the increment of rigid body rotation of the basis
     * system in which the components of stress (STRESS) and strain (STRAN) are stored. It is provided so
     * that vector- or tensor-valued state variables can be rotated appropriately in this subroutine: stress and
     * strain components are already rotated by this amount before UMAT is called. This matrix is passed in
     * as a unit matrix for small-displacement analysis and for large-displacement analysis if the basis system
     * for the material point rotates with the material (as in a shell element or when a local orientation is used).*/
    FloatMatrix drot(3, 3);
    drot.beUnitMatrix();

    /* Characteristic element length, which is a typical length of a line across an element for a first-order
     * element; it is half of the same typical length for a second-order element. For beams and trusses it is a
     * characteristic length along the element axis. For membranes and shells it is a characteristic length in
     * the reference surface. For axisymmetric elements it is a characteristic length in the
     * plane only.
     * For cohesive elements it is equal to the constitutive thickness.*/
    double celent = 0.0; /// @todo Include the characteristic element length

    /* Array containing the deformation gradient at the beginning of the increment. See the discussion
     * regarding the availability of the deformation gradient for various element types. */
    FloatMatrix dfgrd0(3, 3);
    /* Array containing the deformation gradient at the end of the increment. The components of this array
     * are set to zero if nonlinear geometric effects are not included in the step definition associated with
     * this increment. See the discussion regarding the availability of the deformation gradient for various
     * element types. */
    FloatMatrix dfgrd1(3, 3);

    dfgrd0.beMatrixForm( ms->giveFVector() );
    dfgrd1.beMatrixForm(vF);

    int noel = gp->giveElement()->giveNumber(); // Element number.
    int npt = 0; // Integration point number.

    // We intentionally ignore the layer number since that is handled by the layered cross-section in OOFEM.
    int layer = 0; // Layer number (for composite shells and layered solids)..
    int kspt = 0; // Section point number within the current layer.
    int kstep = tStep->giveMetaStepNumber(); // Step number.
    int kinc = 0; // Increment number.
//.........这里部分代码省略.........
开发者ID:aishugang,项目名称:oofem,代码行数:101,代码来源:abaqususermaterial.C

示例2: computeDeviatoricVolumetricSplit

void
MisesMat :: giveFirstPKStressVector_3d(FloatArray &answer,
                                       GaussPoint *gp,
                                       const FloatArray &totalDefGradOOFEM,
                                       TimeStep *tStep)
{
    MisesMatStatus *status = static_cast< MisesMatStatus * >( this->giveStatus(gp) );

    double kappa, dKappa, yieldValue, mi;
    FloatMatrix F, oldF, invOldF;
    FloatArray s;
    F.beMatrixForm(totalDefGradOOFEM); //(method assumes full 3D)

    kappa = status->giveCumulativePlasticStrain();
    oldF.beMatrixForm( status->giveFVector() );
    invOldF.beInverseOf(oldF);
    //relative deformation radient
    FloatMatrix f;
    f.beProductOf(F, invOldF);
    //compute elastic predictor
    FloatMatrix trialLeftCauchyGreen, help;

    f.times( 1./cbrt(f.giveDeterminant()) );

    help.beProductOf(f, status->giveTempLeftCauchyGreen());
    trialLeftCauchyGreen.beProductTOf(help, f);
    FloatMatrix E;
    E.beTProductOf(F, F);
    E.at(1, 1) -= 1.0;
    E.at(2, 2) -= 1.0;
    E.at(3, 3) -= 1.0;
    E.times(0.5);

    FloatArray e;
    e.beSymVectorFormOfStrain(E);

    FloatArray leftCauchyGreen;
    FloatArray leftCauchyGreenDev;
    double leftCauchyGreenVol;

    leftCauchyGreen.beSymVectorFormOfStrain(trialLeftCauchyGreen);

    leftCauchyGreenVol = computeDeviatoricVolumetricSplit(leftCauchyGreenDev, leftCauchyGreen);
    FloatArray trialStressDev;
    applyDeviatoricElasticStiffness(trialStressDev, leftCauchyGreenDev, G / 2.);
    s = trialStressDev;

    //check for plastic loading
    double trialS = computeStressNorm(trialStressDev);
    double sigmaY = sig0 + H * kappa;
    //yieldValue = sqrt(3./2.)*trialS-sigmaY;
    yieldValue = trialS - sqrt(2. / 3.) * sigmaY;


    //store deviatoric trial stress(reused by algorithmic stiffness)
    status->letTrialStressDevBe(trialStressDev);
    //the return-mapping algorithm
    double J = F.giveDeterminant();
    mi = leftCauchyGreenVol * G;
    if ( yieldValue > 0 ) {
        //dKappa =sqrt(3./2.)* yieldValue/(H + 3.*mi);
        //kappa = kappa + dKappa;
        //trialStressDev.times(1-sqrt(6.)*mi*dKappa/trialS);
        dKappa = ( yieldValue / ( 2 * mi ) ) / ( 1 + H / ( 3 * mi ) );
        FloatArray n = trialStressDev;
        n.times(2 * mi * dKappa / trialS);
        ////return map
        s.beDifferenceOf(trialStressDev, n);
        kappa += sqrt(2. / 3.) * dKappa;


        //update of intermediate configuration
        trialLeftCauchyGreen.beMatrixForm(s);
        trialLeftCauchyGreen.times(1.0 / G);
        trialLeftCauchyGreen.at(1, 1) += leftCauchyGreenVol;
        trialLeftCauchyGreen.at(2, 2) += leftCauchyGreenVol;
        trialLeftCauchyGreen.at(2, 2) += leftCauchyGreenVol;
        trialLeftCauchyGreen.times(J * J);
    }

    //addition of the elastic mean stress
    FloatMatrix kirchhoffStress;
    kirchhoffStress.beMatrixForm(s);
    kirchhoffStress.at(1, 1) += 1. / 2. *  K * ( J * J - 1 );
    kirchhoffStress.at(2, 2) += 1. / 2. *  K * ( J * J - 1 );
    kirchhoffStress.at(3, 3) += 1. / 2. *  K * ( J * J - 1 );


    FloatMatrix iF, Ep(3, 3), S;
    FloatArray vF, vS, ep;

    //transform Kirchhoff stress into Second Piola - Kirchhoff stress
    iF.beInverseOf(F);
    help.beProductOf(iF, kirchhoffStress);
    S.beProductTOf(help, iF);

    this->computeGLPlasticStrain(F, Ep, trialLeftCauchyGreen, J);

    ep.beSymVectorFormOfStrain(Ep);
    vS.beSymVectorForm(S);
//.........这里部分代码省略.........
开发者ID:rainbowlqs,项目名称:oofem,代码行数:101,代码来源:misesmat.C


注:本文中的FloatArray::beSymVectorFormOfStrain方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。