本文整理汇总了C++中FloatArray::beProductOf方法的典型用法代码示例。如果您正苦于以下问题:C++ FloatArray::beProductOf方法的具体用法?C++ FloatArray::beProductOf怎么用?C++ FloatArray::beProductOf使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类FloatArray
的用法示例。
在下文中一共展示了FloatArray::beProductOf方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: giveNonlocalInternalForcesVector
void
GradDpElement :: giveNonlocalInternalForcesVector(FloatArray &answer, TimeStep *tStep, int useUpdatedGpRecord)
{
double localCumulatedStrain = 0.;
NLStructuralElement *elem = this->giveNLStructuralElement();
FloatMatrix stiffKappa;
FloatArray Nk;
FloatArray aux, dKappa, stress;
int size = nSecVars * nSecNodes;
//set displacement and nonlocal location array
this->setDisplacementLocationArray();
this->setNonlocalLocationArray();
answer.resize(size);
for ( GaussPoint *gp: *elem->giveIntegrationRule(0) ) {
this->computeNkappaMatrixAt(gp, Nk);
double dV = elem->computeVolumeAround(gp);
this->computeStressVectorAndLocalCumulatedStrain(stress, localCumulatedStrain, gp, tStep);
aux.add(-dV * localCumulatedStrain, Nk);
}
this->computeStiffnessMatrix_kk(stiffKappa, TangentStiffness, tStep);
this->computeNonlocalDegreesOfFreedom(dKappa, tStep);
answer.beProductOf(stiffKappa, dKappa);
answer.add(aux);
}
示例2: computeDeformationGradientVector
void
GradDpElement :: computeDeformationGradientVector(FloatArray &answer, GaussPoint *gp, TimeStep *tStep)
{
// Computes the deformation gradient in the Voigt format at the Gauss point gp of
// the receiver at time step tStep.
// Order of components: 11, 22, 33, 23, 13, 12, 32, 31, 21 in the 3D.
// Obtain the current displacement vector of the element and subtract initial displacements (if present)
FloatArray u;
FloatMatrix B;
NLStructuralElement *elem = this->giveNLStructuralElement();
this->computeDisplacementDegreesOfFreedom(u, tStep);
// Displacement gradient H = du/dX
elem->computeBHmatrixAt(gp, B);
answer.beProductOf(B, u);
// Deformation gradient F = H + I
MaterialMode matMode = gp->giveMaterialMode();
if ( matMode == _3dMat || matMode == _PlaneStrain ) {
answer.at(1) += 1.0;
answer.at(2) += 1.0;
answer.at(3) += 1.0;
} else if ( matMode == _PlaneStress ) {
answer.at(1) += 1.0;
answer.at(2) += 1.0;
} else if ( matMode == _1dMat ) {
answer.at(1) += 1.0;
} else {
OOFEM_ERROR( "MaterialMode is not supported yet (%s)", __MaterialModeToString(matMode) );
}
}
示例3: response
void
SimpleCrossSection :: giveGeneralizedStress_Beam2d(FloatArray &answer, GaussPoint *gp, const FloatArray &strain, TimeStep *tStep)
{
/**Note: (by bp): This assumes that the behaviour is elastic
there exist a nuumber of nonlinear integral material models for beams defined directly in terms of integral forces and moments and corresponding
deformations and curvatures. This would require to implement support at material model level.
Mikael: That would not be a continuum material model, but it would highly depend on the cross-section shape, thus, it should be a special cross-section model instead.
This cross-section assumes you can split the response into inertia moments and pure material response. This is only possible for a constant, elastic response (i.e. elastic).
Therefore, this cross-section may only be allowed to give the elastic response.
*/
StructuralMaterial *mat = static_cast< StructuralMaterial * >( this->giveMaterial(gp) );
FloatArray elasticStrain, et, e0;
FloatMatrix tangent;
elasticStrain = strain;
this->giveTemperatureVector(et, gp, tStep);
if ( et.giveSize() > 0 ) {
mat->giveThermalDilatationVector(e0, gp, tStep);
double thick = this->give(CS_Thickness, gp);
elasticStrain.at(1) -= e0.at(1) * ( et.at(1) - mat->giveReferenceTemperature() );
if ( et.giveSize() > 1 ) {
elasticStrain.at(2) -= e0.at(1) * et.at(2) / thick; // kappa_x
}
}
this->give2dBeamStiffMtrx(tangent, ElasticStiffness, gp, tStep);
answer.beProductOf(tangent, elasticStrain);
StructuralMaterialStatus *status = static_cast< StructuralMaterialStatus * >( mat->giveStatus(gp) );
status->letTempStrainVectorBe(strain);
status->letTempStressVectorBe(answer);
}
示例4:
void SimpleVitrificationMaterial :: giveRealStressVector_3d(FloatArray &answer, GaussPoint *gp,
const FloatArray &reducedStrain, TimeStep *tStep)
{
FloatArray strainVector;
FloatMatrix d;
FloatArray deltaStrain;
StructuralMaterialStatus *status = dynamic_cast< StructuralMaterialStatus * >( this->giveStatus(gp) );
this->giveStressDependentPartOfStrainVector(strainVector, gp, reducedStrain, tStep, VM_Total);
deltaStrain.beDifferenceOf( strainVector, status->giveStrainVector() );
this->give3dMaterialStiffnessMatrix(d, TangentStiffness, gp, tStep);
FloatArray deltaStress;
deltaStress.beProductOf(d, deltaStrain);
answer = status->giveStressVector();
answer.add(deltaStress);
// update gp
status->letTempStrainVectorBe(reducedStrain);
status->letTempStressVectorBe(answer);
}
示例5: nm
void
LIBeam3dNL :: giveInternalForcesVector(FloatArray &answer, TimeStep *tStep, int useUpdatedGpRecord)
{
GaussPoint *gp = this->giveDefaultIntegrationRulePtr()->getIntegrationPoint(0);
FloatArray nm(6), stress, strain;
FloatMatrix x;
double s1, s2;
// update temp triad
this->updateTempTriad(tStep);
if ( useUpdatedGpRecord == 1 ) {
stress = static_cast< StructuralMaterialStatus * >( gp->giveMaterialStatus() )->giveStrainVector();
} else {
this->computeStrainVector(strain, gp, tStep);
this->computeStressVector(stress, strain, gp, tStep);
}
for ( int i = 1; i <= 3; i++ ) {
s1 = s2 = 0.0;
for ( int j = 1; j <= 3; j++ ) {
s1 += tempTc.at(i, j) * stress.at(j);
s2 += tempTc.at(i, j) * stress.at(j + 3);
}
nm.at(i) = s1;
nm.at(i + 3) = s2;
}
this->computeXMtrx(x, tStep);
answer.beProductOf(x, nm);
}
示例6: giveRealStressVector
void
TrabBoneEmbed :: giveRealStressVector(FloatArray &answer, MatResponseForm form, GaussPoint *gp,
const FloatArray &totalStrain,
TimeStep *atTime)
{
double tempDam, tempTSED;
FloatArray newTotalDef, plasDef;
FloatArray totalStress;
FloatMatrix compliance, elasticity;
this->constructIsoComplTensor(compliance, eps0, nu0);
elasticity.beInverseOf(compliance);
TrabBoneEmbedStatus *status = ( TrabBoneEmbedStatus * ) this->giveStatus(gp);
this->initGpForNewStep(gp);
performPlasticityReturn(gp, totalStrain);
tempDam = computeDamage(gp, atTime);
plasDef.resize(6);
totalStress.beProductOf(elasticity, totalStrain);
tempTSED = 0.5 * totalStrain.dotProduct(totalStress);
answer.resize(6);
answer = totalStress;
status->setTempDam(tempDam);
status->letTempStrainVectorBe(totalStrain);
status->letTempStressVectorBe(answer);
status->setTempTSED(tempTSED);
}
示例7:
void
SimpleCrossSection :: giveGeneralizedStress_Shell(FloatArray &answer, GaussPoint *gp, const FloatArray &strain, TimeStep *tStep)
{
/**Note: (by bp): This assumes that the behaviour is elastic
there exist a nuumber of nonlinear integral material models for beams/plates/shells
defined directly in terms of integral forces and moments and corresponding
deformations and curvatures. This would require to implement support at material model level.
Mikael: See earlier response to comment
*/
StructuralMaterial *mat = static_cast< StructuralMaterial * >( this->giveMaterial(gp) );
FloatArray elasticStrain, et, e0;
FloatMatrix tangent;
elasticStrain = strain;
this->giveTemperatureVector(et, gp, tStep);
if ( et.giveSize() ) {
double thick = this->give(CS_Thickness, gp);
mat->giveThermalDilatationVector(e0, gp, tStep);
elasticStrain.at(1) -= e0.at(1) * ( et.at(1) - mat->giveReferenceTemperature() );
elasticStrain.at(2) -= e0.at(2) * ( et.at(1) - mat->giveReferenceTemperature() );
if ( et.giveSize() > 1 ) {
elasticStrain.at(4) -= e0.at(1) * et.at(2) / thick; // kappa_x
elasticStrain.at(5) -= e0.at(2) * et.at(2) / thick; // kappa_y
}
}
this->give3dShellStiffMtrx(tangent, ElasticStiffness, gp, tStep);
answer.beProductOf(tangent, elasticStrain);
StructuralMaterialStatus *status = static_cast< StructuralMaterialStatus * >( mat->giveStatus(gp) );
status->letTempStrainVectorBe(strain);
status->letTempStressVectorBe(answer);
}
示例8: fKappa
void
GradDpElement :: giveNonlocalInternalForcesVector(FloatArray &answer, TimeStep *tStep, int useUpdatedGpRecord)
{
double dV, localCumulatedStrain = 0.;
NLStructuralElement *elem = this->giveNLStructuralElement();
FloatMatrix stiffKappa, Nk;
FloatArray fKappa(nlSize), aux(nlSize), dKappa, stress;
aux.zero();
int size = nSecVars * nSecNodes;
//set displacement and nonlocal location array
this->setDisplacementLocationArray(locU, nPrimNodes, nPrimVars, nSecNodes, nSecVars);
this->setNonlocalLocationArray(locK, nPrimNodes, nPrimVars, nSecNodes, nSecVars);
answer.resize(size);
for ( GaussPoint *gp: *elem->giveIntegrationRule(0) ) {
this->computeNkappaMatrixAt(gp, Nk);
for ( int j = 1; j <= nlSize; j++ ) {
fKappa.at(j) = Nk.at(1, j);
}
dV = elem->computeVolumeAround(gp);
this->computeStressVectorAndLocalCumulatedStrain(stress, localCumulatedStrain, gp, tStep);
fKappa.times(localCumulatedStrain);
fKappa.times(-dV);
aux.add(fKappa);
}
this->computeStiffnessMatrix_kk(stiffKappa, TangentStiffness, tStep);
this->computeNonlocalDegreesOfFreedom(dKappa, tStep);
answer.beProductOf(stiffKappa, dKappa);
answer.add(aux);
}
示例9: nm
void
LIBeam3dNL :: giveInternalForcesVector(FloatArray &answer, TimeStep *tStep, int useUpdatedGpRecord)
{
int i, j;
Material *mat = this->giveMaterial();
IntegrationRule *iRule = integrationRulesArray [ giveDefaultIntegrationRule() ];
GaussPoint *gp = iRule->getIntegrationPoint(0);
FloatArray nm(6), TotalStressVector(6);
FloatMatrix x;
double s1, s2;
// update temp triad
this->updateTempTriad(tStep);
if ( useUpdatedGpRecord == 1 ) {
TotalStressVector = ( ( StructuralMaterialStatus * ) mat->giveStatus(gp) )
->giveStressVector();
} else {
this->computeStressVector(TotalStressVector, gp, tStep);
}
for ( i = 1; i <= 3; i++ ) {
s1 = s2 = 0.0;
for ( j = 1; j <= 3; j++ ) {
s1 += tempTc.at(i, j) * TotalStressVector.at(j);
s2 += tempTc.at(i, j) * TotalStressVector.at(j + 3);
}
nm.at(i) = s1;
nm.at(i + 3) = s2;
}
this->computeXMtrx(x, tStep);
answer.beProductOf(x, nm);
}
示例10: K
void PolygonLine :: computeIntersectionPoints(const FloatArray &iXStart, const FloatArray &iXEnd, std :: vector< FloatArray > &oIntersectionPoints) const
{
const double detTol = 1.0e-15;
int numSeg = this->giveNrVertices() - 1;
for(int segIndex = 1; segIndex <= numSeg; segIndex++) {
const FloatArray &xStart = this->giveVertex(segIndex);
const FloatArray &xEnd = this->giveVertex(segIndex+1);
const FloatArray t1 = {xEnd(0) - xStart(0), xEnd(1) - xStart(1)};
const FloatArray t2 = {iXEnd(0) - iXStart(0), iXEnd(1) - iXStart(1)};
double xi1 = 0.0, xi2 = 0.0;
int maxIter = 1;
for(int iter = 0; iter < maxIter; iter++) {
FloatArray temp = {iXStart(0) + xi2*t2(0) - xStart(0) - xi1*t1(0), iXStart(1) + xi2*t2(1) - xStart(1) - xi1*t1(1)};
FloatArray res = {-t1.dotProduct(temp), t2.dotProduct(temp)};
//printf("iter: %d res: %e\n", iter, res.computeNorm() );
FloatMatrix K(2,2);
K(0,0) = t1.dotProduct(t1);
K(0,1) = -t1.dotProduct(t2);
K(1,0) = -t1.dotProduct(t2);
K(1,1) = t2.dotProduct(t2);
double detK = K.giveDeterminant();
if(detK < detTol) {
return;
}
FloatMatrix KInv;
KInv.beInverseOf(K);
FloatArray dxi;
dxi.beProductOf(KInv, res);
xi1 -= dxi(0);
xi2 -= dxi(1);
}
// printf("xi1: %e xi2: %e\n", xi1, xi2);
if(xi1 >= 0.0 && xi1 <= 1.0 && xi2 >= 0.0 && xi2 <= 1.0) {
FloatArray pos = xStart;
pos.add(xi1, t1);
oIntersectionPoints.push_back(pos);
}
}
}
示例11: computeNonlocalGradient
void
GradDpElement :: computeNonlocalGradient(FloatArray &answer, GaussPoint *gp, TimeStep *tStep)
{
FloatMatrix Bk;
FloatArray u;
this->computeBkappaMatrixAt(gp, Bk);
this->computeNonlocalDegreesOfFreedom(u, tStep);
answer.beProductOf(Bk, u);
}
示例12: computePrescribedTermsI
void
CBSElement :: computePrescribedTermsI(FloatArray &answer, ValueModeType mode, TimeStep *tStep)
{
FloatMatrix mass;
FloatArray usp;
this->computeConsistentMassMtrx(mass, tStep);
this->computeVectorOf(EID_MomentumBalance, mode, tStep, usp);
answer.beProductOf(mass, usp);
answer.negated();
}
示例13: computePrescribedTermsI
void
CBSElement :: computePrescribedTermsI(FloatArray &answer, TimeStep *tStep)
{
FloatMatrix mass;
FloatArray usp;
this->computeConsistentMassMtrx(mass, tStep);
this->computeVectorOfVelocities(VM_Incremental, tStep, usp);
answer.beProductOf(mass, usp);
answer.negated();
}
示例14: computePrescribedTermsII
void
CBSElement :: computePrescribedTermsII(FloatArray &answer, ValueModeType mode, TimeStep *tStep)
{
FloatMatrix lhs;
FloatArray usp;
this->computePressureLhs(lhs, tStep);
this->computeVectorOfPressures(mode, tStep, usp);
answer.beProductOf(lhs, usp);
answer.negated();
}
示例15: computeDeviatoricStrain
void
SUPGElement2 :: computeDeviatoricStrain(FloatArray &answer, GaussPoint *gp, TimeStep *tStep)
{
FloatArray u;
FloatMatrix b;
this->computeVectorOfVelocities(VM_Total, tStep, u);
this->computeBMatrix(b, gp);
answer.beProductOf(b, u);
}