本文整理汇总了C++中ExportVariable::setDataStruct方法的典型用法代码示例。如果您正苦于以下问题:C++ ExportVariable::setDataStruct方法的具体用法?C++ ExportVariable::setDataStruct怎么用?C++ ExportVariable::setDataStruct使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ExportVariable
的用法示例。
在下文中一共展示了ExportVariable::setDataStruct方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: setup
returnValue LiftedERKExport::setup( )
{
int useOMP;
get(CG_USE_OPENMP, useOMP);
ExportStruct structWspace;
structWspace = useOMP ? ACADO_LOCAL : ACADO_WORKSPACE;
int sensGen;
get( DYNAMIC_SENSITIVITY,sensGen );
if ( (ExportSensitivityType)sensGen != FORWARD && (ExportSensitivityType)sensGen != NO_SENSITIVITY && (ExportSensitivityType)sensGen != INEXACT ) ACADOERROR( RET_INVALID_OPTION );
int liftMode = 1;
// liftMode == 1 --> EXACT LIFTING
// liftMode == 2 --> INEXACT LIFTING
if( (ExportSensitivityType)sensGen == INEXACT ) liftMode = 2;
bool DERIVATIVES = ((ExportSensitivityType)sensGen != NO_SENSITIVITY);
LOG( LVL_DEBUG ) << "Preparing to export ExplicitRungeKuttaExport... " << endl;
// setup linear solver:
int solverType;
userInteraction->get( LINEAR_ALGEBRA_SOLVER,solverType );
if ( solver )
delete solver;
solver = 0;
switch( (LinearAlgebraSolver) solverType ) {
case GAUSS_LU:
solver = new ExportGaussElim( userInteraction,commonHeaderName );
solver->init( NXA, NX+NU+1 );
solver->setReuse( true ); // IFTR method
solver->setup();
rk_auxSolver = solver->getGlobalExportVariable( 1 );
break;
default:
return ACADOERROR( RET_INVALID_OPTION );
}
rk_A = ExportVariable( "rk_A", NXA, NXA, REAL, structWspace );
rk_b = ExportVariable( "rk_b", NXA, 1+NX+NU, REAL, structWspace );
// export RK scheme
uint rhsDim = NX*(NX+NU+1);
uint zDim = NXA*(NX+NU+1);
inputDim = (NX+NXA)*(NX+NU+1) + NU + NOD;
if( !DERIVATIVES ) return ACADOERROR( RET_INVALID_OPTION );
const uint rkOrder = getNumStages();
double h = (grid.getLastTime() - grid.getFirstTime())/grid.getNumIntervals();
ExportVariable Ah ( "A*h", DMatrix( AA )*=h );
ExportVariable b4h( "b4*h", DMatrix( bb )*=h );
rk_index = ExportVariable( "rk_index", 1, 1, INT, ACADO_LOCAL, true );
rk_eta = ExportVariable( "rk_eta", 1, inputDim );
rk_ttt.setup( "rk_ttt", 1, 1, REAL, structWspace, true );
uint timeDep = 0;
if( timeDependant ) timeDep = 1;
rk_xxx.setup("rk_xxx", 1, inputDim+NXA+timeDep, REAL, structWspace);
rk_kkk.setup("rk_kkk", rkOrder, rhsDim, REAL, structWspace);
rk_zzz.setup("rk_zzz", getN()*grid.getNumIntervals()*rkOrder, NXA, REAL, structWspace);
rk_zTemp.setup("rk_zTemp", 1, NXA*(1+NX+NXA+NU), REAL, structWspace);
// if( liftMode == 1 ) {
rk_diffZ.setup("rk_diffZ", getN()*grid.getNumIntervals()*rkOrder*NXA, NX+NU, REAL, structWspace);
rk_delta.setup( "rk_delta", 1, NX+NU, REAL, ACADO_WORKSPACE );
rk_prev.setup( "rk_prev", getN(), NX+NU, REAL, ACADO_WORKSPACE );
// }
if ( useOMP )
{
ExportVariable auxVar;
auxVar = getAuxVariable();
auxVar.setName( "odeAuxVar" );
auxVar.setDataStruct( ACADO_LOCAL );
rhs.setGlobalExportVariable( auxVar );
diffs_rhs.setGlobalExportVariable( auxVar );
}
ExportIndex run( "run1" );
ExportIndex shoot_index( "shoot_index" );
ExportIndex k_index( "k_index" );
// setup INTEGRATE function
integrate = ExportFunction( "integrate", rk_eta, rk_index ); // you need the rk_index for LIFTING !
integrate.setReturnValue( error_code );
rk_eta.setDoc( "Working array to pass the input values and return the results." );
reset_int.setDoc( "The internal memory of the integrator can be reset." );
rk_index.setDoc( "Number of the shooting interval." );
error_code.setDoc( "Status code of the integrator." );
integrate.doc( "Performs the integration and sensitivity propagation for one shooting interval." );
integrate.addIndex( run );
integrate.addIndex( shoot_index );
integrate.addIndex( k_index );
ExportVariable det( "det", 1, 1, REAL, ACADO_LOCAL, true );
//.........这里部分代码省略.........
示例2: setup
returnValue ExplicitRungeKuttaExport::setup( )
{
int sensGen;
get( DYNAMIC_SENSITIVITY,sensGen );
if ( (ExportSensitivityType)sensGen != FORWARD && (ExportSensitivityType)sensGen != NO_SENSITIVITY ) ACADOERROR( RET_INVALID_OPTION );
bool DERIVATIVES = ((ExportSensitivityType)sensGen != NO_SENSITIVITY);
LOG( LVL_DEBUG ) << "Preparing to export ExplicitRungeKuttaExport... " << endl;
// export RK scheme
uint rhsDim = NX*(NX+NU+1);
if( !DERIVATIVES ) rhsDim = NX;
inputDim = NX*(NX+NU+1) + NU + NOD;
if( !DERIVATIVES ) inputDim = NX + NU + NOD;
const uint rkOrder = getNumStages();
double h = (grid.getLastTime() - grid.getFirstTime())/grid.getNumIntervals();
ExportVariable Ah ( "A*h", DMatrix( AA )*=h );
ExportVariable b4h( "b4*h", DMatrix( bb )*=h );
rk_index = ExportVariable( "rk_index", 1, 1, INT, ACADO_LOCAL, true );
rk_eta = ExportVariable( "rk_eta", 1, inputDim );
int useOMP;
get(CG_USE_OPENMP, useOMP);
ExportStruct structWspace;
structWspace = useOMP ? ACADO_LOCAL : ACADO_WORKSPACE;
rk_ttt.setup( "rk_ttt", 1, 1, REAL, structWspace, true );
uint timeDep = 0;
if( timeDependant ) timeDep = 1;
rk_xxx.setup("rk_xxx", 1, inputDim+timeDep, REAL, structWspace);
rk_kkk.setup("rk_kkk", rkOrder, rhsDim, REAL, structWspace);
if ( useOMP )
{
ExportVariable auxVar;
auxVar = getAuxVariable();
auxVar.setName( "odeAuxVar" );
auxVar.setDataStruct( ACADO_LOCAL );
rhs.setGlobalExportVariable( auxVar );
diffs_rhs.setGlobalExportVariable( auxVar );
}
ExportIndex run( "run1" );
// setup INTEGRATE function
if( equidistantControlGrid() ) {
integrate = ExportFunction( "integrate", rk_eta, reset_int );
}
else {
integrate = ExportFunction( "integrate", rk_eta, reset_int, rk_index );
}
integrate.setReturnValue( error_code );
rk_eta.setDoc( "Working array to pass the input values and return the results." );
reset_int.setDoc( "The internal memory of the integrator can be reset." );
rk_index.setDoc( "Number of the shooting interval." );
error_code.setDoc( "Status code of the integrator." );
integrate.doc( "Performs the integration and sensitivity propagation for one shooting interval." );
integrate.addIndex( run );
ExportVariable numInt( "numInts", 1, 1, INT );
if( !equidistantControlGrid() ) {
integrate.addStatement( std::string( "int numSteps[" ) + toString( numSteps.getDim() ) + "] = {" + toString( numSteps(0) ) );
uint i;
for( i = 1; i < numSteps.getDim(); i++ ) {
integrate.addStatement( std::string( ", " ) + toString( numSteps(i) ) );
}
integrate.addStatement( std::string( "};\n" ) );
integrate.addStatement( std::string( "int " ) + numInt.getName() + " = numSteps[" + rk_index.getName() + "];\n" );
}
integrate.addStatement( rk_ttt == DMatrix(grid.getFirstTime()) );
if( DERIVATIVES ) {
// initialize sensitivities:
DMatrix idX = eye<double>( NX );
DMatrix zeroXU = zeros<double>( NX,NU );
integrate.addStatement( rk_eta.getCols( NX,NX*(1+NX) ) == idX.makeVector().transpose() );
integrate.addStatement( rk_eta.getCols( NX*(1+NX),NX*(1+NX+NU) ) == zeroXU.makeVector().transpose() );
}
if( inputDim > rhsDim ) {
integrate.addStatement( rk_xxx.getCols( rhsDim,inputDim ) == rk_eta.getCols( rhsDim,inputDim ) );
}
integrate.addLinebreak( );
// integrator loop
ExportForLoop loop;
if( equidistantControlGrid() ) {
loop = ExportForLoop( run, 0, grid.getNumIntervals() );
}
else {
loop = ExportForLoop( run, 0, 1 );
loop.addStatement( std::string("for(") + run.getName() + " = 0; " + run.getName() + " < " + numInt.getName() + "; " + run.getName() + "++ ) {\n" );
}
//.........这里部分代码省略.........
示例3: setupMultiplicationRoutines
returnValue CondensingExport::setupMultiplicationRoutines( )
{
ExportVariable QQ = deepcopy( Q );
QQ.setDataStruct( ACADO_LOCAL );
ExportVariable QC1( "QC1", getNX(),getNX() );
ExportVariable QE1( "QE1", getNX(),getNU()*getN() );
ExportVariable Dx1( "Dx1", getNX(),1 );
ExportVariable QDx1("QDx1", getNX(),1 );
ExportVariable Du1( "Du1", getNU(),1 );
ExportVariable RDu1("RDu1", getNU(),1 );
ExportVariable Gx ( "Gx", getNX(),getNX() );
ExportVariable Gu ( "Gu", getNX(),getNU() );
ExportVariable C1 ( "C1", getNX(),getNX() );
ExportVariable E1 ( "E1", getNX(),getNU()*getN() );
ExportVariable d1 ( "d1", getNX(),1 );
ExportVariable u1 ( "u1", getNU(),1 );
ExportVariable C ( "C", getNX()*getN(),getNX() );
ExportVariable QC ( "QC", getNX()*getN(),getNX() );
ExportVariable E ( "E", getNX()*getN(),getNU()*getN() );
ExportVariable QE ( "QE", getNX()*getN(),getNU()*getN() );
ExportVariable QDx( "QDx", getNX()*getN(),1 );
ExportVariable g0 ( "g0", getNX(),1 );
ExportVariable g1 ( "g1", getNU()*getN(),1 );
ExportVariable H00( "H00", getNX(),getNX() );
ExportVariable H01( "H01", getNX(),getNU()*getN() );
ExportVariable H11( "H11", getNU()*getN(),getNU()*getN() );
multiplyQC1.setup( "multiplyQC1", QQ,C1,QC1 );
multiplyQC1.addStatement( QC1 == QQ*C1 );
multiplyQE1.setup( "multiplyQE1", QQ,E1,QE1 );
multiplyQE1.addStatement( QE1 == QQ*E1 );
multiplyQDX1.setup( "multiplyQDX1", QQ,Dx1,QDx1 );
multiplyQDX1.addStatement( QDx1 == QQ*Dx1 );
multiplyRDU1.setup( "multiplyRDU1", R,Du1,RDu1 );
multiplyRDU1.addStatement( RDu1 == R*Du1 );
multiplyQC2.setup( "multiplyQC2", QQF,C1,QC1 );
multiplyQC2.addStatement( QC1 == QQF*C1 );
multiplyQE2.setup( "multiplyQE2", QQF,E1,QE1 );
multiplyQE2.addStatement( QE1 == QQF*E1 );
multiplyQDX2.setup( "multiplyQDX2", QQF,Dx1,QDx1 );
multiplyQDX2.addStatement( QDx1 == QQF*Dx1 );
multiplyC.setup( "multiplyC", Gx,C1,C1("C1_new") );
multiplyC.addStatement( C1("C1_new") == Gx*C1 );
multiplyE.setup( "multiplyE", Gx,E1,E1("E1_new") );
multiplyE.addStatement( E1("E1_new") == Gx*E1 );
if ( performsSingleShooting() == BT_FALSE )
{
multiplyCD1.setup( "multiplyCD1", Gx,d1,d1("d1_new") );
multiplyCD1.addStatement( d1("d1_new") == Gx*d1 );
multiplyEU1.setup( "multiplyEU1", Gu,u1,d1("d1_new") );
multiplyEU1.addStatement( d1("d1_new") += Gu*u1 );
}
if ( performsFullCondensing() == BT_FALSE )
{
multiplyG0.setup( "multiplyG0", C,QDx,g0 );
multiplyG0.addStatement( g0 == (C^QDx) );
}
multiplyG1.setup( "multiplyG1", E,QDx,g1 );
multiplyG1.addStatement( g1 == (E^QDx) );
if ( performsFullCondensing() == BT_FALSE )
{
multiplyH00.setup( "multiplyH00", C,QC,H00 );
multiplyH00.addStatement( H00 == (C^QC) );
}
multiplyH01.setup( "multiplyH01", C,QE,H01 );
multiplyH01.addStatement( H01 == (C^QE) );
multiplyH11.setup( "multiplyH11", E,QE,H11 );
multiplyH11.addStatement( (H11 == (E^QE)) );
return SUCCESSFUL_RETURN;
}
示例4: setup
returnValue ThreeSweepsERKExport::setup( )
{
int sensGen;
get( DYNAMIC_SENSITIVITY,sensGen );
if ( (ExportSensitivityType)sensGen != SYMMETRIC ) ACADOERROR( RET_INVALID_OPTION );
// NOT SUPPORTED: since the forward sweep needs to be saved
if( !equidistantControlGrid() ) ACADOERROR( RET_INVALID_OPTION );
// NOT SUPPORTED: since the adjoint derivatives could be 'arbitrarily bad'
if( !is_symmetric ) ACADOERROR( RET_INVALID_OPTION );
LOG( LVL_DEBUG ) << "Preparing to export ThreeSweepsERKExport... " << endl;
// export RK scheme
uint numX = NX*(NX+1)/2.0;
uint numU = NU*(NU+1)/2.0;
uint rhsDim = NX + NX + NX*(NX+NU) + numX + NX*NU + numU;
inputDim = rhsDim + NU + NOD;
const uint rkOrder = getNumStages();
double h = (grid.getLastTime() - grid.getFirstTime())/grid.getNumIntervals();
ExportVariable Ah ( "A*h", DMatrix( AA )*=h );
ExportVariable b4h( "b4*h", DMatrix( bb )*=h );
rk_index = ExportVariable( "rk_index", 1, 1, INT, ACADO_LOCAL, true );
rk_eta = ExportVariable( "rk_eta", 1, inputDim );
// seed_backward.setup( "seed", 1, NX );
int useOMP;
get(CG_USE_OPENMP, useOMP);
ExportStruct structWspace;
structWspace = useOMP ? ACADO_LOCAL : ACADO_WORKSPACE;
rk_ttt.setup( "rk_ttt", 1, 1, REAL, structWspace, true );
uint timeDep = 0;
if( timeDependant ) timeDep = 1;
rk_xxx.setup("rk_xxx", 1, inputDim+timeDep, REAL, structWspace);
uint numK = NX*(NX+NU)+numX+NX*NU+numU;
rk_kkk.setup("rk_kkk", rkOrder, numK, REAL, structWspace);
rk_forward_sweep.setup("rk_sweep1", 1, grid.getNumIntervals()*rkOrder*NX, REAL, structWspace);
rk_backward_sweep.setup("rk_sweep2", 1, grid.getNumIntervals()*rkOrder*NX, REAL, structWspace);
if ( useOMP )
{
ExportVariable auxVar;
auxVar = diffs_rhs.getGlobalExportVariable();
auxVar.setName( "odeAuxVar" );
auxVar.setDataStruct( ACADO_LOCAL );
diffs_rhs.setGlobalExportVariable( auxVar );
}
ExportIndex run( "run1" );
// setup INTEGRATE function
integrate = ExportFunction( "integrate", rk_eta, reset_int );
integrate.setReturnValue( error_code );
rk_eta.setDoc( "Working array to pass the input values and return the results." );
reset_int.setDoc( "The internal memory of the integrator can be reset." );
rk_index.setDoc( "Number of the shooting interval." );
error_code.setDoc( "Status code of the integrator." );
integrate.doc( "Performs the integration and sensitivity propagation for one shooting interval." );
integrate.addIndex( run );
integrate.addStatement( rk_ttt == DMatrix(grid.getFirstTime()) );
if( inputDim > rhsDim ) {
// initialize sensitivities:
// integrate.addStatement( rk_eta.getCols( NX,2*NX ) == seed_backward );
DMatrix idX = eye<double>( NX );
DMatrix zeroXU = zeros<double>( NX,NU );
integrate.addStatement( rk_eta.getCols( 2*NX,NX*(2+NX) ) == idX.makeVector().transpose() );
integrate.addStatement( rk_eta.getCols( NX*(2+NX),NX*(2+NX+NU) ) == zeroXU.makeVector().transpose() );
integrate.addStatement( rk_eta.getCols( NX*(2+NX+NU),rhsDim ) == zeros<double>( 1,numX+NX*NU+numU ) );
// FORWARD SWEEP FIRST
integrate.addStatement( rk_xxx.getCols( NX,NX+NU+NOD ) == rk_eta.getCols( rhsDim,inputDim ) );
}
integrate.addLinebreak( );
// integrator loop: FORWARD SWEEP
ExportForLoop loop = ExportForLoop( run, 0, grid.getNumIntervals() );
for( uint run1 = 0; run1 < rkOrder; run1++ )
{
loop.addStatement( rk_xxx.getCols( 0,NX ) == rk_eta.getCols( 0,NX ) + Ah.getRow(run1)*rk_kkk.getCols( 0,NX ) );
// save forward trajectory
loop.addStatement( rk_forward_sweep.getCols( run*rkOrder*NX+run1*NX,run*rkOrder*NX+(run1+1)*NX ) == rk_xxx.getCols( 0,NX ) );
if( timeDependant ) loop.addStatement( rk_xxx.getCol( NX+NU+NOD ) == rk_ttt + ((double)cc(run1))/grid.getNumIntervals() );
loop.addFunctionCall( getNameRHS(),rk_xxx,rk_kkk.getAddress(run1,0) );
}
loop.addStatement( rk_eta.getCols( 0,NX ) += b4h^rk_kkk.getCols( 0,NX ) );
loop.addStatement( rk_ttt += DMatrix(1.0/grid.getNumIntervals()) );
// end of integrator loop: FORWARD SWEEP
integrate.addStatement( loop );
if( inputDim > rhsDim ) {
// BACKWARD SWEEP NEXT
//.........这里部分代码省略.........
示例5: getCode
returnValue DiscreteTimeExport::getCode( ExportStatementBlock& code
)
{
int useOMP;
get(CG_USE_OPENMP, useOMP);
if ( useOMP ) {
ExportVariable max = getAuxVariable();
max.setName( "auxVar" );
max.setDataStruct( ACADO_LOCAL );
if( NX2 > 0 ) {
rhs.setGlobalExportVariable( max );
diffs_rhs.setGlobalExportVariable( max );
}
if( NX3 > 0 ) {
rhs3.setGlobalExportVariable( max );
diffs_rhs3.setGlobalExportVariable( max );
}
getDataDeclarations( code, ACADO_LOCAL );
stringstream s;
s << "#pragma omp threadprivate( "
<< max.getFullName() << ", "
<< rk_xxx.getFullName();
if( NX1 > 0 ) {
if( grid.getNumIntervals() > 1 || !equidistantControlGrid() ) s << ", " << rk_diffsPrev1.getFullName();
s << ", " << rk_diffsNew1.getFullName();
}
if( NX2 > 0 || NXA > 0 ) {
if( grid.getNumIntervals() > 1 || !equidistantControlGrid() ) s << ", " << rk_diffsPrev2.getFullName();
s << ", " << rk_diffsNew2.getFullName();
}
if( NX3 > 0 ) {
if( grid.getNumIntervals() > 1 || !equidistantControlGrid() ) s << ", " << rk_diffsPrev3.getFullName();
s << ", " << rk_diffsNew3.getFullName();
s << ", " << rk_diffsTemp3.getFullName();
}
s << " )" << endl << endl;
code.addStatement( s.str().c_str() );
}
if( NX1 > 0 ) {
code.addFunction( lin_input );
code.addStatement( "\n\n" );
}
if( NX2 > 0 ) {
code.addFunction( rhs );
code.addStatement( "\n\n" );
code.addFunction( diffs_rhs );
code.addStatement( "\n\n" );
}
if( NX3 > 0 ) {
code.addFunction( rhs3 );
code.addStatement( "\n\n" );
code.addFunction( diffs_rhs3 );
code.addStatement( "\n\n" );
}
if( !equidistantControlGrid() ) {
ExportVariable numStepsV( "numSteps", numSteps, STATIC_CONST_INT );
code.addDeclaration( numStepsV );
code.addLinebreak( 2 );
}
double h = (grid.getLastTime() - grid.getFirstTime())/grid.getNumIntervals();
code.addComment(std::string("Fixed step size:") + toString(h));
code.addFunction( integrate );
return SUCCESSFUL_RETURN;
}