本文整理汇总了C++中ExportVariable::getRow方法的典型用法代码示例。如果您正苦于以下问题:C++ ExportVariable::getRow方法的具体用法?C++ ExportVariable::getRow怎么用?C++ ExportVariable::getRow使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ExportVariable
的用法示例。
在下文中一共展示了ExportVariable::getRow方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: setupSolveReuseTranspose
returnValue ExportGaussElim::setupSolveReuseTranspose( ExportFunction& _solveReuse, ExportVariable& _bPerm ) {
ExportIndex run1( "i" );
ExportIndex run2( "j" );
ExportVariable tmp( "tmp_var", 1, 1, _bPerm.getType(), ACADO_LOCAL, true );
_solveReuse.addIndex( run1 );
_solveReuse.addIndex( run2 );
_solveReuse.addDeclaration(tmp);
_solveReuse.addStatement( _bPerm == b_trans );
ExportForLoop loop2( run2, 0, dim ); // row run2
ExportForLoop loop3( run1, 0, run2 ); // column run1
loop3.addStatement( _bPerm.getRow(run2) -= A.getElement(run1,run2)*_bPerm.getRow(run1) );
loop2.addStatement( loop3 );
loop2 << tmp.getName() << " = 1.0/A[" << run2.getName() << "*" << toString(dim+1) << "];\n";
loop2.addStatement( _bPerm.getRow(run2) == _bPerm.getRow(run2)*tmp );
_solveReuse.addStatement( loop2 );
// Solve the upper triangular system of equations:
ExportForLoop loop4( run1, dim-1, -1, -1 );
ExportForLoop loop5( run2, dim-1, run1, -1 );
loop5.addStatement( _bPerm.getRow(run1) += A.getElement(run2,run1)*_bPerm.getRow(run2) );
loop4.addStatement( loop5 );
_solveReuse.addStatement( loop4 );
// The permutation now happens HERE!
ExportForLoop loop1( run1, 0, dim );
loop1 << run2.getName() << " = " << rk_perm.getFullName() << "[" << run1.getName() << "];\n";
loop1.addStatement( b_trans.getRow(run2) == _bPerm.getRow(run1) );
_solveReuse.addStatement( loop1 );
return SUCCESSFUL_RETURN;
}
示例2: setup
//.........这里部分代码省略.........
if( DERIVATIVES ) {
// initialize sensitivities:
DMatrix idX = eye<double>( NX );
DMatrix zeroXU = zeros<double>( NX,NU );
integrate.addStatement( rk_eta.getCols( NX+NXA,NXA+NX*(1+NX) ) == idX.makeVector().transpose() );
integrate.addStatement( rk_eta.getCols( (NX+NXA)*(1+NX),(NX+NXA)*(1+NX)+NX*NU ) == zeroXU.makeVector().transpose() );
}
if( inputDim > (rhsDim+zDim) ) {
integrate.addStatement( rk_xxx.getCols( NXA+rhsDim+zDim,NXA+inputDim ) == rk_eta.getCols( rhsDim+zDim,inputDim ) );
}
// if( liftMode == 1 ) {
integrate.addStatement( rk_delta.getCols( 0,NX ) == rk_eta.getCols( 0,NX ) - rk_prev.getSubMatrix(shoot_index,shoot_index+1,0,NX) );
integrate.addStatement( rk_delta.getCols( NX,NX+NU ) == rk_eta.getCols( rhsDim+zDim,rhsDim+zDim+NU ) - rk_prev.getSubMatrix(shoot_index,shoot_index+1,NX,NX+NU) );
integrate.addStatement( rk_prev.getSubMatrix(shoot_index,shoot_index+1,0,NX) == rk_eta.getCols( 0,NX ) );
integrate.addStatement( rk_prev.getSubMatrix(shoot_index,shoot_index+1,NX,NX+NU) == rk_eta.getCols( rhsDim+zDim,rhsDim+zDim+NU ) );
// }
integrate.addLinebreak( );
// integrator loop
ExportForLoop loop;
if( equidistantControlGrid() ) {
loop = ExportForLoop( run, 0, grid.getNumIntervals() );
}
else {
loop = ExportForLoop( run, 0, 1 );
loop.addStatement( std::string("for(") + run.getName() + " = 0; " + run.getName() + " < " + numInt.getName() + "; " + run.getName() + "++ ) {\n" );
}
loop.addStatement( k_index == (shoot_index*grid.getNumIntervals()+run) );
for( uint run1 = 0; run1 < rkOrder; run1++ )
{
loop.addStatement( rk_xxx.getCols( 0,NX ) == rk_eta.getCols( 0,NX ) + Ah.getRow(run1)*rk_kkk.getCols( 0,NX ) );
loop.addStatement( rk_xxx.getCols( NX,NX*(1+NX) ) == rk_eta.getCols( NX+NXA,NXA+NX*(1+NX) ) + Ah.getRow(run1)*rk_kkk.getCols( NX,NX*(1+NX) ) );
loop.addStatement( rk_xxx.getCols( NX*(1+NX),rhsDim ) == rk_eta.getCols( (NX+NXA)*(1+NX),(NX+NXA)*(1+NX)+NX*NU ) + Ah.getRow(run1)*rk_kkk.getCols( NX*(1+NX),rhsDim ) );
if( timeDependant ) loop.addStatement( rk_xxx.getCol( NXA+inputDim ) == rk_ttt + ((double)cc(run1))/grid.getNumIntervals() );
// update algebraic variables based on previous SQP step:
// if( liftMode == 1 ) {
loop.addStatement( rk_zzz.getRow(k_index*rkOrder+run1) += rk_delta*rk_diffZ.getRows( k_index*rkOrder*NXA+run1*NXA,k_index*rkOrder*NXA+run1*NXA+NXA ).getTranspose() );
// }
// evaluate the right algebraic variables and equations:
loop.addStatement( rk_xxx.getCols( rhsDim,rhsDim+NXA ) == rk_zzz.getRow(k_index*rkOrder+run1) );
if( liftMode == 2 ) {
for( uint i = 0; i < NXA; i++ ) {
for( uint j = 0; j < NX; j++ ) {
loop.addStatement( rk_xxx.getCol( rhsDim+2*NXA+i*NX+j ) == rk_diffZ.getElement( k_index*rkOrder*NXA+run1*NXA+i,j ) );
}
for( uint j = 0; j < NU; j++ ) {
loop.addStatement( rk_xxx.getCol( rhsDim+NXA*(2+NX)+i*NU+j ) == rk_diffZ.getElement( k_index*rkOrder*NXA+run1*NXA+i,NX+j ) );
}
}
}
loop.addFunctionCall( alg_rhs.getName(),rk_xxx,rk_zTemp );
// JACOBIAN FACTORIZATION ALGEBRAIC EQUATIONS
if( liftMode == 1 ) { // EXACT
for( uint i = 0; i < NXA; i++ ) {
for( uint j = 0; j < NXA; j++ ) {
loop.addStatement( rk_A.getElement(i,j) == rk_zTemp.getCol(NXA*(1+NX)+i*NXA+j) );
}
}
loop.addStatement( det.getFullName() + " = " + solver->getNameSolveFunction() + "( " + rk_A.getFullName() + ", " + rk_auxSolver.getFullName() + " );\n" );
}
示例3: setup
//.........这里部分代码省略.........
rk_eta = ExportVariable( "rk_eta", 1, inputDim );
int useOMP;
get(CG_USE_OPENMP, useOMP);
ExportStruct structWspace;
structWspace = useOMP ? ACADO_LOCAL : ACADO_WORKSPACE;
rk_ttt.setup( "rk_ttt", 1, 1, REAL, structWspace, true );
uint timeDep = 0;
if( timeDependant ) timeDep = 1;
rk_xxx.setup("rk_xxx", 1, inputDim+timeDep, REAL, structWspace);
rk_kkk.setup("rk_kkk", rkOrder, rhsDim, REAL, structWspace);
if ( useOMP )
{
ExportVariable auxVar;
auxVar = getAuxVariable();
auxVar.setName( "odeAuxVar" );
auxVar.setDataStruct( ACADO_LOCAL );
rhs.setGlobalExportVariable( auxVar );
diffs_rhs.setGlobalExportVariable( auxVar );
}
ExportIndex run( "run1" );
// setup INTEGRATE function
if( equidistantControlGrid() ) {
integrate = ExportFunction( "integrate", rk_eta, reset_int );
}
else {
integrate = ExportFunction( "integrate", rk_eta, reset_int, rk_index );
}
integrate.setReturnValue( error_code );
rk_eta.setDoc( "Working array to pass the input values and return the results." );
reset_int.setDoc( "The internal memory of the integrator can be reset." );
rk_index.setDoc( "Number of the shooting interval." );
error_code.setDoc( "Status code of the integrator." );
integrate.doc( "Performs the integration and sensitivity propagation for one shooting interval." );
integrate.addIndex( run );
ExportVariable numInt( "numInts", 1, 1, INT );
if( !equidistantControlGrid() ) {
integrate.addStatement( std::string( "int numSteps[" ) + toString( numSteps.getDim() ) + "] = {" + toString( numSteps(0) ) );
uint i;
for( i = 1; i < numSteps.getDim(); i++ ) {
integrate.addStatement( std::string( ", " ) + toString( numSteps(i) ) );
}
integrate.addStatement( std::string( "};\n" ) );
integrate.addStatement( std::string( "int " ) + numInt.getName() + " = numSteps[" + rk_index.getName() + "];\n" );
}
integrate.addStatement( rk_ttt == DMatrix(grid.getFirstTime()) );
if( DERIVATIVES ) {
// initialize sensitivities:
DMatrix idX = eye<double>( NX );
DMatrix zeroXU = zeros<double>( NX,NU );
integrate.addStatement( rk_eta.getCols( NX,NX*(1+NX) ) == idX.makeVector().transpose() );
integrate.addStatement( rk_eta.getCols( NX*(1+NX),NX*(1+NX+NU) ) == zeroXU.makeVector().transpose() );
}
if( inputDim > rhsDim ) {
integrate.addStatement( rk_xxx.getCols( rhsDim,inputDim ) == rk_eta.getCols( rhsDim,inputDim ) );
}
integrate.addLinebreak( );
// integrator loop
ExportForLoop loop;
if( equidistantControlGrid() ) {
loop = ExportForLoop( run, 0, grid.getNumIntervals() );
}
else {
loop = ExportForLoop( run, 0, 1 );
loop.addStatement( std::string("for(") + run.getName() + " = 0; " + run.getName() + " < " + numInt.getName() + "; " + run.getName() + "++ ) {\n" );
}
for( uint run1 = 0; run1 < rkOrder; run1++ )
{
loop.addStatement( rk_xxx.getCols( 0,rhsDim ) == rk_eta.getCols( 0,rhsDim ) + Ah.getRow(run1)*rk_kkk );
if( timeDependant ) loop.addStatement( rk_xxx.getCol( inputDim ) == rk_ttt + ((double)cc(run1))/grid.getNumIntervals() );
loop.addFunctionCall( getNameDiffsRHS(),rk_xxx,rk_kkk.getAddress(run1,0) );
}
loop.addStatement( rk_eta.getCols( 0,rhsDim ) += b4h^rk_kkk );
loop.addStatement( rk_ttt += DMatrix(1.0/grid.getNumIntervals()) );
// end of integrator loop
if( !equidistantControlGrid() ) {
loop.addStatement( "}\n" );
// loop.unrollLoop();
}
integrate.addStatement( loop );
integrate.addStatement( error_code == 0 );
LOG( LVL_DEBUG ) << "done" << endl;
return SUCCESSFUL_RETURN;
}
示例4: setup
returnValue ThreeSweepsERKExport::setup( )
{
int sensGen;
get( DYNAMIC_SENSITIVITY,sensGen );
if ( (ExportSensitivityType)sensGen != SYMMETRIC ) ACADOERROR( RET_INVALID_OPTION );
// NOT SUPPORTED: since the forward sweep needs to be saved
if( !equidistantControlGrid() ) ACADOERROR( RET_INVALID_OPTION );
// NOT SUPPORTED: since the adjoint derivatives could be 'arbitrarily bad'
if( !is_symmetric ) ACADOERROR( RET_INVALID_OPTION );
LOG( LVL_DEBUG ) << "Preparing to export ThreeSweepsERKExport... " << endl;
// export RK scheme
uint numX = NX*(NX+1)/2.0;
uint numU = NU*(NU+1)/2.0;
uint rhsDim = NX + NX + NX*(NX+NU) + numX + NX*NU + numU;
inputDim = rhsDim + NU + NOD;
const uint rkOrder = getNumStages();
double h = (grid.getLastTime() - grid.getFirstTime())/grid.getNumIntervals();
ExportVariable Ah ( "A*h", DMatrix( AA )*=h );
ExportVariable b4h( "b4*h", DMatrix( bb )*=h );
rk_index = ExportVariable( "rk_index", 1, 1, INT, ACADO_LOCAL, true );
rk_eta = ExportVariable( "rk_eta", 1, inputDim );
// seed_backward.setup( "seed", 1, NX );
int useOMP;
get(CG_USE_OPENMP, useOMP);
ExportStruct structWspace;
structWspace = useOMP ? ACADO_LOCAL : ACADO_WORKSPACE;
rk_ttt.setup( "rk_ttt", 1, 1, REAL, structWspace, true );
uint timeDep = 0;
if( timeDependant ) timeDep = 1;
rk_xxx.setup("rk_xxx", 1, inputDim+timeDep, REAL, structWspace);
uint numK = NX*(NX+NU)+numX+NX*NU+numU;
rk_kkk.setup("rk_kkk", rkOrder, numK, REAL, structWspace);
rk_forward_sweep.setup("rk_sweep1", 1, grid.getNumIntervals()*rkOrder*NX, REAL, structWspace);
rk_backward_sweep.setup("rk_sweep2", 1, grid.getNumIntervals()*rkOrder*NX, REAL, structWspace);
if ( useOMP )
{
ExportVariable auxVar;
auxVar = diffs_rhs.getGlobalExportVariable();
auxVar.setName( "odeAuxVar" );
auxVar.setDataStruct( ACADO_LOCAL );
diffs_rhs.setGlobalExportVariable( auxVar );
}
ExportIndex run( "run1" );
// setup INTEGRATE function
integrate = ExportFunction( "integrate", rk_eta, reset_int );
integrate.setReturnValue( error_code );
rk_eta.setDoc( "Working array to pass the input values and return the results." );
reset_int.setDoc( "The internal memory of the integrator can be reset." );
rk_index.setDoc( "Number of the shooting interval." );
error_code.setDoc( "Status code of the integrator." );
integrate.doc( "Performs the integration and sensitivity propagation for one shooting interval." );
integrate.addIndex( run );
integrate.addStatement( rk_ttt == DMatrix(grid.getFirstTime()) );
if( inputDim > rhsDim ) {
// initialize sensitivities:
// integrate.addStatement( rk_eta.getCols( NX,2*NX ) == seed_backward );
DMatrix idX = eye<double>( NX );
DMatrix zeroXU = zeros<double>( NX,NU );
integrate.addStatement( rk_eta.getCols( 2*NX,NX*(2+NX) ) == idX.makeVector().transpose() );
integrate.addStatement( rk_eta.getCols( NX*(2+NX),NX*(2+NX+NU) ) == zeroXU.makeVector().transpose() );
integrate.addStatement( rk_eta.getCols( NX*(2+NX+NU),rhsDim ) == zeros<double>( 1,numX+NX*NU+numU ) );
// FORWARD SWEEP FIRST
integrate.addStatement( rk_xxx.getCols( NX,NX+NU+NOD ) == rk_eta.getCols( rhsDim,inputDim ) );
}
integrate.addLinebreak( );
// integrator loop: FORWARD SWEEP
ExportForLoop loop = ExportForLoop( run, 0, grid.getNumIntervals() );
for( uint run1 = 0; run1 < rkOrder; run1++ )
{
loop.addStatement( rk_xxx.getCols( 0,NX ) == rk_eta.getCols( 0,NX ) + Ah.getRow(run1)*rk_kkk.getCols( 0,NX ) );
// save forward trajectory
loop.addStatement( rk_forward_sweep.getCols( run*rkOrder*NX+run1*NX,run*rkOrder*NX+(run1+1)*NX ) == rk_xxx.getCols( 0,NX ) );
if( timeDependant ) loop.addStatement( rk_xxx.getCol( NX+NU+NOD ) == rk_ttt + ((double)cc(run1))/grid.getNumIntervals() );
loop.addFunctionCall( getNameRHS(),rk_xxx,rk_kkk.getAddress(run1,0) );
}
loop.addStatement( rk_eta.getCols( 0,NX ) += b4h^rk_kkk.getCols( 0,NX ) );
loop.addStatement( rk_ttt += DMatrix(1.0/grid.getNumIntervals()) );
// end of integrator loop: FORWARD SWEEP
integrate.addStatement( loop );
if( inputDim > rhsDim ) {
// BACKWARD SWEEP NEXT
//.........这里部分代码省略.........