本文整理汇总了C++中Experiment::set_workload方法的典型用法代码示例。如果您正苦于以下问题:C++ Experiment::set_workload方法的具体用法?C++ Experiment::set_workload怎么用?C++ Experiment::set_workload使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Experiment
的用法示例。
在下文中一共展示了Experiment::set_workload方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
int main()
{
printf("Running EagleTree\n");
set_small_SSD_config();
string name = "/demo_output/";
Experiment::create_base_folder(name.c_str());
Experiment* e = new Experiment();
Workload_Definition* workload = new Example_Workload();
e->set_workload(workload);
e->set_io_limit(1000000);
e->run("test");
e->draw_graphs();
delete workload;
return 0;
}
示例2: main
int main()
{
printf("Running EagleTree\n");
set_small_SSD_config();
// set_big_SSD_config();
//gogo greedy
// GARBAGE_COLLECTION_POLICY = 0;
// string name = "/greedy_demo_output/";
// gogo LRU
GARBAGE_COLLECTION_POLICY = 1;
string name = "/lru_demo_output/";
//gogo dj
// GARBAGE_COLLECTION_POLICY = 2;
// string name = "/demo_output_500/";
FTL_DESIGN = 1; // using DFTL
SCHEDULING_SCHEME = 7;
PRINT_LEVEL = 0;
MAX_SSD_QUEUE_SIZE = 16;
ftl_cache::CACHED_ENTRIES_THRESHOLD = pow(2,15); // SRAM fitting 256 kb, or 2^25 entries,
DFTL::ENTRIES_PER_TRANSLATION_PAGE = 128;
Experiment::create_base_folder(name.c_str());
Experiment* e = new Experiment();
Workload_Definition* workload = new Example_Workload();
e->set_workload(workload);
printf("NUMBER_OF_ADDRESSABLE_PAGES: %d %d\n", NUMBER_OF_ADDRESSABLE_PAGES(), (int)(NUMBER_OF_ADDRESSABLE_PAGES() * OVER_PROVISIONING_FACTOR));
e->set_io_limit(3000000);
// e->set_io_limit(30000000);
// e->set_io_limit(pow(2,0));
e->run("test");
e->draw_graphs();
delete workload;
return 0;
}
示例3: main
int main()
{
printf("Running EagleTree\n");
set_small_SSD_config();
string name = "/demo_output/";
Experiment::create_base_folder(name.c_str());
Workload_Definition* init = new Init_Workload();
string calibration_file = "calib.txt";
SCHEDULING_SCHEME = 1; // use the noop IO scheduler during calibration because it's fastest in terms of real execution time
Experiment::calibrate_and_save(init, calibration_file);
delete init;
Experiment* e = new Experiment();
e->set_calibration_file(calibration_file);
Workload_Definition* workload = new Asynch_Random_Workload();
e->set_workload(workload);
e->set_io_limit(1000000);
SCHEDULING_SCHEME = 0; // use a fifo IO scheduler during the actual experiment
e->run("test");
e->draw_graphs();
delete workload;
return 0;
}