本文整理汇总了C++中EngineContext::getOptions方法的典型用法代码示例。如果您正苦于以下问题:C++ EngineContext::getOptions方法的具体用法?C++ EngineContext::getOptions怎么用?C++ EngineContext::getOptions使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类EngineContext
的用法示例。
在下文中一共展示了EngineContext::getOptions方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: return
bool
TileNode::shouldSubDivide(TerrainCuller* culler, const SelectionInfo& selectionInfo)
{
unsigned currLOD = _key.getLOD();
EngineContext* context = culler->getEngineContext();
if (context->getOptions().rangeMode() == osg::LOD::PIXEL_SIZE_ON_SCREEN)
{
float pixelSize = -1.0;
if (context->getEngine()->getComputeRangeCallback())
{
pixelSize = (*context->getEngine()->getComputeRangeCallback())(this, *culler->_cv);
}
if (pixelSize <= 0.0)
{
pixelSize = culler->clampedPixelSize(getBound());
}
return (pixelSize > context->getOptions().tilePixelSize().get() * 4);
}
else
{
float range = (float)selectionInfo.visParameters(currLOD+1)._visibilityRange2;
if (currLOD < selectionInfo.getNumLODs() && currLOD != selectionInfo.getNumLODs()-1)
{
return _surface->anyChildBoxIntersectsSphere(
culler->getViewPointLocal(),
range,
culler->getLODScale());
}
}
return false;
}
示例2: lock
void
TileNode::load(osg::NodeVisitor& nv)
{
// Access the context:
EngineContext* context = static_cast<EngineContext*>( nv.getUserData() );
// Create a new load request on demand:
if ( !_loadRequest.valid() )
{
Threading::ScopedMutexLock lock(_mutex);
if ( !_loadRequest.valid() )
{
_loadRequest = new LoadTileData( this, context );
_loadRequest->setName( _key.str() );
_loadRequest->setTileKey( _key );
}
}
#if 0
double range0, range1;
int lod = getTileKey().getLOD();
if ( lod > context->getOptions().firstLOD().get() )
range0 = context->getSelectionInfo().visParameters(lod-1)._visibilityRange;
else
range0 = 0.0;
double range1 = context->getSelectionInfo().visParameters(lod)._visibilityRange;
priority =
#endif
// Prioritize by LOD. (negated because lower order gets priority)
float priority = - (float)getTileKey().getLOD();
if ( context->getOptions().highResolutionFirst() == true )
{
priority = context->getSelectionInfo().numLods() - priority;
//priority = -priority;
}
// then sort by distance within each LOD.
float distance = nv.getDistanceToViewPoint( getBound().center(), true );
priority = 10.0f*priority - log10(distance);
// testing intermediate loading idea...
//if ( getTileKey().getLOD() == 5 )
// priority += 100.0f;
// Submit to the loader.
context->getLoader()->load( _loadRequest.get(), priority, nv );
}
示例3: lock
void
TileNode::load(osg::NodeVisitor& nv)
{
// Access the context:
EngineContext* context = VisitorData::fetch<EngineContext>(nv, ENGINE_CONTEXT_TAG);
// Create a new load request on demand:
if ( !_loadRequest.valid() )
{
Threading::ScopedMutexLock lock(_mutex);
if ( !_loadRequest.valid() )
{
_loadRequest = new LoadTileData( this, context );
_loadRequest->setName( _key.str() );
_loadRequest->setTileKey( _key );
}
}
// Construct the load PRIORITY: 0=lowest, 1=highest.
const SelectionInfo& si = context->getSelectionInfo();
int lod = getTileKey().getLOD();
int numLods = si.numLods();
// LOD priority is in the range [0..numLods]
float lodPriority = (float)lod;
if ( context->getOptions().highResolutionFirst() == false )
lodPriority = (float)(numLods - lod);
float distance = nv.getDistanceToViewPoint(getBound().center(), true);
// dist priority uis in the range [0..1]
float distPriority = 1.0 - distance/si.visParameters(0)._visibilityRange;
// add thenm together, and you get tiles sorted first by lodPriority (because of
// the biggest range), and second by distance.
float priority = lodPriority + distPriority;
// normalize the composite priority to [0..1].
priority /= (float)(numLods+1);
// Submit to the loader.
context->getLoader()->load( _loadRequest.get(), priority, nv );
}
示例4: cull
void TileNode::cull(osg::NodeVisitor& nv)
{
if ( nv.getFrameStamp() )
{
_lastTraversalFrame.exchange( nv.getFrameStamp()->getFrameNumber() );
}
unsigned currLOD = getTileKey().getLOD();
osgUtil::CullVisitor* cv = static_cast<osgUtil::CullVisitor*>( &nv );
EngineContext* context = static_cast<EngineContext*>( nv.getUserData() );
const SelectionInfo& selectionInfo = context->getSelectionInfo();
if ( context->progress() )
context->progress()->stats()["TileNode::cull"]++;
// determine whether we can and should subdivide to a higher resolution:
bool subdivide =
shouldSubDivide(nv, selectionInfo, cv->getLODScale());
// whether it is OK to create child TileNodes is necessary.
bool canCreateChildren = subdivide;
// whether it is OK to load data if necessary.
bool canLoadData = true;
if ( _dirty && context->getOptions().progressive() == true )
{
// Don't create children in progressive mode until content is in place
canCreateChildren = false;
}
else
{
// If this is an inherit-viewpoint camera, we don't need it to invoke subdivision
// because we want only the tiles loaded by the true viewpoint.
const osg::Camera* cam = cv->getCurrentCamera();
if ( cam && cam->getReferenceFrame() == osg::Camera::ABSOLUTE_RF_INHERIT_VIEWPOINT )
{
canCreateChildren = false;
canLoadData = false;
}
}
optional<bool> surfaceVisible;
// If *any* of the children are visible, subdivide.
if (subdivide)
{
// We are in range of the child nodes. Either draw them or load them.
// If the children don't exist, create them and inherit the parent's data.
if ( getNumChildren() == 0 && canCreateChildren )
{
Threading::ScopedMutexLock exclusive(_mutex);
if ( getNumChildren() == 0 )
{
createChildren( context );
}
}
// If all are ready, traverse them now.
if ( getNumChildren() == 4 )
{
for(int i=0; i<4; ++i)
{
_children[i]->accept( nv );
}
}
// If we don't traverse the children, traverse this node's payload.
else if ( _surface.valid() )
{
surfaceVisible = acceptSurface( cv, context );
}
}
// If children are outside camera range, draw the payload and expire the children.
else if ( _surface.valid() )
{
surfaceVisible = acceptSurface( cv, context );
if ( getNumChildren() >= 4 && context->maxLiveTilesExceeded() )
{
if (getSubTile(0)->isDormant( nv ) &&
getSubTile(1)->isDormant( nv ) &&
getSubTile(2)->isDormant( nv ) &&
getSubTile(3)->isDormant( nv ))
{
expireChildren( nv );
}
}
}
// Traverse land cover data at this LOD.
int zoneIndex = context->_landCoverData->_currentZoneIndex;
if ( zoneIndex < (int)context->_landCoverData->_zones.size() )
//.........这里部分代码省略.........
示例5: shouldSubDivide
bool
TileNode::cull(TerrainCuller* culler)
{
EngineContext* context = culler->getEngineContext();
// Horizon check the surface first:
if (!_surface->isVisibleFrom(culler->getViewPointLocal()))
{
return false;
}
// determine whether we can and should subdivide to a higher resolution:
bool childrenInRange = shouldSubDivide(culler, context->getSelectionInfo());
// whether it is OK to create child TileNodes is necessary.
bool canCreateChildren = childrenInRange;
// whether it is OK to load data if necessary.
bool canLoadData = true;
// whether to accept the current surface node and not the children.
bool canAcceptSurface = false;
// Don't create children in progressive mode until content is in place
if ( _dirty && context->getOptions().progressive() == true )
{
canCreateChildren = false;
}
// If this is an inherit-viewpoint camera, we don't need it to invoke subdivision
// because we want only the tiles loaded by the true viewpoint.
const osg::Camera* cam = culler->getCamera();
if ( cam && cam->getReferenceFrame() == osg::Camera::ABSOLUTE_RF_INHERIT_VIEWPOINT )
{
canCreateChildren = false;
canLoadData = false;
}
if (childrenInRange)
{
// We are in range of the child nodes. Either draw them or load them.
// If the children don't exist, create them and inherit the parent's data.
if ( !_childrenReady && canCreateChildren )
{
_mutex.lock();
if ( !_childrenReady )
{
OE_START_TIMER(createChildren);
createChildren( context );
REPORT("TileNode::createChildren", createChildren);
_childrenReady = true;
// This means that you cannot start loading data immediately; must wait a frame.
canLoadData = false;
}
_mutex.unlock();
}
// If all are ready, traverse them now.
if ( _childrenReady )
{
for(int i=0; i<4; ++i)
{
getSubTile(i)->accept(*culler);
}
}
// If we don't traverse the children, traverse this node's payload.
else
{
canAcceptSurface = true;
}
}
// If children are outside camera range, draw the payload and expire the children.
else
{
canAcceptSurface = true;
}
// accept this surface if necessary.
if ( canAcceptSurface )
{
_surface->accept( *culler );
_lastAcceptSurfaceFrame.exchange( culler->getFrameStamp()->getFrameNumber() );
}
// If this tile is marked dirty, try loading data.
if ( _dirty && canLoadData )
{
load( culler );
}
return true;
}
示例6: setupRenderBindings
void
RexTerrainEngineNode::dirtyTerrain()
{
//TODO: scrub the geometry pool?
// clear the loader:
_loader->clear();
if ( _terrain )
{
this->removeChild( _terrain );
}
// New terrain
_terrain = new osg::Group();
this->addChild( _terrain );
// are we LOD blending?
bool setupParentData =
_terrainOptions.morphImagery() == true || // gw: redundant?
this->parentTexturesRequired();
// reserve GPU unit for the main color texture:
if ( _renderBindings.empty() )
{
setupRenderBindings();
}
// recalculate the LOD morphing parameters:
//destroySelectionInfo();
//buildSelectionInfo();
// clear out the tile registry:
if ( _liveTiles.valid() )
{
_liveTiles->moveAll( _deadTiles.get() );
}
// Factory to create the root keys:
EngineContext* context = getEngineContext();
// Build the first level of the terrain.
// Collect the tile keys comprising the root tiles of the terrain.
std::vector<TileKey> keys;
_update_mapf->getProfile()->getAllKeysAtLOD( *_terrainOptions.firstLOD(), keys );
// create a root node for each root tile key.
OE_INFO << LC << "Creating " << keys.size() << " root keys.." << std::endl;
unsigned child = 0;
for( unsigned i=0; i<keys.size(); ++i )
{
TileNode* tileNode = new TileNode();
if (context->getOptions().minExpiryFrames().isSet())
{
tileNode->setMinimumExpiryFrames( *context->getOptions().minExpiryFrames() );
}
if (context->getOptions().minExpiryTime().isSet())
{
tileNode->setMinimumExpiryTime( *context->getOptions().minExpiryTime() );
}
// Next, build the surface geometry for the node.
tileNode->create( keys[i], context );
_terrain->addChild( tileNode );
}
updateState();
// Call the base class
TerrainEngineNode::dirtyTerrain();
}
示例7: cull
void TileNode::cull(osg::NodeVisitor& nv)
{
osgUtil::CullVisitor* cv = static_cast<osgUtil::CullVisitor*>( &nv );
EngineContext* context = static_cast<EngineContext*>( nv.getUserData() );
const SelectionInfo& selectionInfo = context->getSelectionInfo();
// record the number of drawables before culling this node:
unsigned before = RenderBinUtils::getTotalNumRenderLeaves( cv->getRenderStage() );
if ( context->progress() )
context->progress()->stats()["TileNode::cull"]++;
// determine whether we can and should subdivide to a higher resolution:
bool subdivide = shouldSubDivide(nv, selectionInfo, cv->getLODScale());
// whether it is OK to create child TileNodes is necessary.
bool canCreateChildren = subdivide;
// whether it is OK to load data if necessary.
bool canLoadData = true;
if ( _dirty && context->getOptions().progressive() == true )
{
// Don't create children in progressive mode until content is in place
canCreateChildren = false;
}
// If this is an inherit-viewpoint camera, we don't need it to invoke subdivision
// because we want only the tiles loaded by the true viewpoint.
const osg::Camera* cam = cv->getCurrentCamera();
if ( cam && cam->getReferenceFrame() == osg::Camera::ABSOLUTE_RF_INHERIT_VIEWPOINT )
{
canCreateChildren = false;
canLoadData = false;
}
optional<bool> surfaceVisible( false );
if (subdivide)
{
// We are in range of the child nodes. Either draw them or load them.
// If the children don't exist, create them and inherit the parent's data.
if ( getNumChildren() == 0 && canCreateChildren )
{
Threading::ScopedMutexLock exclusive(_mutex);
if ( getNumChildren() == 0 )
{
createChildren( context );
}
}
// If all are ready, traverse them now.
if ( getNumChildren() == 4 )
{
for(int i=0; i<4; ++i)
{
// pre-check each child for simple bounding sphere culling, and if the check
// fails, unload it's children if them exist. This lets us unload dormant
// tiles from memory as we go. If those children are visible from another
// camera, no worries, the unload attempt will fail gracefully.
if (!cv->isCulled(*_children[i].get()))
{
_children[i]->accept( nv );
}
else
{
context->getUnloader()->unloadChildren(getSubTile(i)->getTileKey());
}
}
}
// If we don't traverse the children, traverse this node's payload.
else if ( _surface.valid() )
{
surfaceVisible = acceptSurface( cv, context );
}
}
// If children are outside camera range, draw the payload and expire the children.
else if ( _surface.valid() )
{
surfaceVisible = acceptSurface( cv, context );
// if children exists, and are not in the process of loading, unload them now.
if ( !_dirty && _children.size() > 0 )
{
context->getUnloader()->unloadChildren( this->getTileKey() );
}
}
// See whether we actually added any drawables.
unsigned after = RenderBinUtils::getTotalNumRenderLeaves( cv->getRenderStage() );
bool addedDrawables = (after > before);
// Only continue if we accepted at least one surface drawable.
if ( addedDrawables )
{
//.........这里部分代码省略.........
示例8: shouldSubDivide
bool
TileNode::cull(osgUtil::CullVisitor* cv)
{
EngineContext* context = VisitorData::fetch<EngineContext>(*cv, ENGINE_CONTEXT_TAG);
const SelectionInfo& selectionInfo = context->getSelectionInfo();
// Horizon check the surface first:
if ( !_surface->isVisible(cv) )
{
return false;
}
// determine whether we can and should subdivide to a higher resolution:
bool childrenInRange = shouldSubDivide(cv, selectionInfo);
// whether it is OK to create child TileNodes is necessary.
bool canCreateChildren = childrenInRange;
// whether it is OK to load data if necessary.
bool canLoadData = true;
// whether to accept the current surface node and not the children.
bool canAcceptSurface = false;
// Don't create children in progressive mode until content is in place
if ( _dirty && context->getOptions().progressive() == true )
{
canCreateChildren = false;
}
// If this is an inherit-viewpoint camera, we don't need it to invoke subdivision
// because we want only the tiles loaded by the true viewpoint.
const osg::Camera* cam = cv->getCurrentCamera();
if ( cam && cam->getReferenceFrame() == osg::Camera::ABSOLUTE_RF_INHERIT_VIEWPOINT )
{
canCreateChildren = false;
canLoadData = false;
}
if (childrenInRange)
{
// We are in range of the child nodes. Either draw them or load them.
// If the children don't exist, create them and inherit the parent's data.
if ( !_childrenReady && canCreateChildren )
{
_mutex.lock();
if ( !_childrenReady )
{
OE_START_TIMER(createChildren);
createChildren( context );
REPORT("TileNode::createChildren", createChildren);
_childrenReady = true;
// This means that you cannot start loading data immediately; must wait a frame.
canLoadData = false;
}
_mutex.unlock();
}
// If all are ready, traverse them now.
if ( _childrenReady )
{
for(int i=0; i<4; ++i)
{
getSubTile(i)->accept_cull(cv);
}
// if we traversed all children, but they all return "not visible",
// that means it's a horizon-culled tile anyway and we don't need
// to add any drawables.
}
// If we don't traverse the children, traverse this node's payload.
else
{
canAcceptSurface = true;
}
}
// If children are outside camera range, draw the payload and expire the children.
else
{
canAcceptSurface = true;
}
// accept this surface if necessary.
if ( canAcceptSurface )
{
acceptSurface( cv, context );
_lastAcceptSurfaceFrame.exchange( cv->getFrameStamp()->getFrameNumber() );
}
// Run any patch callbacks.
context->invokeTilePatchCallbacks( cv, getTileKey(), _payloadStateSet.get(), _patch.get() );
// If this tile is marked dirty, try loading data.
//.........这里部分代码省略.........