本文整理汇总了C++中DoubleVector::display方法的典型用法代码示例。如果您正苦于以下问题:C++ DoubleVector::display方法的具体用法?C++ DoubleVector::display怎么用?C++ DoubleVector::display使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类DoubleVector
的用法示例。
在下文中一共展示了DoubleVector::display方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: dotProd
// Outputs T^ijk V_i summing over ith (1st 2nd or 3rd) index. eg i =
// 1: M_ij = T^kij V_k
// 2: M_ij = T^jki V_k
// 3: M_ij = T^ijk V_k
// so the matrix indices are just in order from L-R AFTER summed index.
DoubleMatrix Tensor::dotProd(const DoubleVector & V, int i) const {
DoubleMatrix result(3, 3);
int j, k, l;
for (j=1; j<=3; j++)
for (k=1; k<=3; k++)
switch(i) {
case 1:
for (l=1; l<=3; l++)
result(j, k) += display(l, j, k) * V.display(l);
break;
case 2:
for (l=1; l<=3; l++)
result(j, k) += display(k, l, j) * V.display(l);
break;
case 3:
for (l=1; l<=3; l++)
result(j, k) += display(j, k, l) * V.display(l);
break;
default:
ostringstream ii;
ii << "sum out of range in dot product " << *this << "*"
<< V << "(" << V.displayStart() << "," << V.displayEnd() << ")"
<< " on " << i << "th index.\n";
throw ii.str();
}
return result;
}
示例2: set
void NmssmSusy::set(const DoubleVector & y) {
assert(y.displayEnd() - y.displayStart() + 1 >= numNMssmPars);
MssmSusy::set(y);
sVev = y.display(34);
lambda = y.display(35);
kappa = y.display(36);
mupr = y.display(37);
xiF = y.display(38);
}
示例3: gaugegravityBcs1
void gaugegravityBcs1( MssmSoftsusy & m,
const DoubleVector & inputParameters ) {
double M_moduli_local, M_gauge_local, M_mess_local ;
M_moduli_local = inputParameters.display(1) ;
double m1, m2, m3 ;
m.setGaugeCoupling( 1, global_g1 );
m.setGaugeCoupling( 2, global_g2 );
m.setGaugeCoupling( 3, global_g3 );
m1 = l1 * M_moduli_local ;
m2 = l2 * M_moduli_local ;
m3 = l3 * M_moduli_local ;
m.setGauginoMass( 1, m1 ) ;
m.setGauginoMass( 2, m2 ) ;
m.setGauginoMass( 3, m3 ) ;
double mqlsq , mllsq, mursq, mdrsq, mersq ;
double mhusq , mhdsq;
double M_moduli_sqr_local;
M_moduli_sqr_local = M_moduli_local*M_moduli_local ;
mqlsq = ( 1 - nQ ) * M_moduli_sqr_local ;
mllsq = ( 1 - nL ) * M_moduli_sqr_local ;
mursq = ( 1 - nU ) * M_moduli_sqr_local ;
mdrsq = ( 1 - nD ) * M_moduli_sqr_local ;
mersq = ( 1 - nE ) * M_moduli_sqr_local ;
mhusq = ( 1 - nHu) * M_moduli_sqr_local ;
mhdsq = ( 1 - nHd) * M_moduli_sqr_local ;
DoubleMatrix id(3, 3);
id(1, 1) = 1.0; id(2, 2) = 1.0; id(3, 3) = 1.0;
m.setSoftMassMatrix(mQl, mqlsq * id);
m.setSoftMassMatrix(mUr, mursq * id);
m.setSoftMassMatrix(mDr, mdrsq * id);
m.setSoftMassMatrix(mLl, mllsq * id);
m.setSoftMassMatrix(mEr, mersq * id);
m.setMh1Squared(mhdsq);
m.setMh2Squared(mhusq);
double A_HuQU , A_HdQD, A_HdLE ;
A_HuQU = ( 3 - nHu - nQ - nU ) * M_moduli_local ;
A_HdQD = ( 3 - nHd - nQ - nD ) * M_moduli_local ;
A_HdLE = ( 3 - nHd - nL - nE ) * M_moduli_local ;
m.setTrilinearElement(UA, 1, 1, m.displayYukawaElement(YU, 1, 1) * A_HuQU);
m.setTrilinearElement(UA, 2, 2, m.displayYukawaElement(YU, 2, 2) * A_HuQU);
m.setTrilinearElement(UA, 3, 3, m.displayYukawaElement(YU, 3, 3) * A_HuQU);
m.setTrilinearElement(DA, 1, 1, m.displayYukawaElement(YD, 1, 1) * A_HdQD);
m.setTrilinearElement(DA, 2, 2, m.displayYukawaElement(YD, 2, 2) * A_HdQD);
m.setTrilinearElement(DA, 3, 3, m.displayYukawaElement(YD, 3, 3) * A_HdQD);
m.setTrilinearElement(EA, 1, 1, m.displayYukawaElement(YE, 1, 1) * A_HdLE);
m.setTrilinearElement(EA, 2, 2, m.displayYukawaElement(YE, 2, 2) * A_HdLE);
m.setTrilinearElement(EA, 3, 3, m.displayYukawaElement(YE, 3, 3) * A_HdLE);
}
示例4: yu
void StandardModel<Two_scale>::set(const DoubleVector& y)
{
int i, j, k = 0;
for (i = 1; i <= 3; i++)
for (j = 1; j <= 3; j++) {
k++;
yu(i, j) = y.display(k);
yd(i, j) = y.display(k + 9);
ye(i, j) = y.display(k + 18);
}
k = 27;
for (i = 1; i <= 3; i++) {
k++;
g(i) = y.display(k);
}
}
示例5: outerProduct
// l labels the position the vector index goes in.
// After that, indices are cyclic.
Tensor outerProduct(const DoubleVector &V, const DoubleMatrix & M, int l) {
Tensor temp;
int i, j, k;
for (i=1; i<=3; i++)
for (j=1; j<=3; j++)
for (k=1; k<=3; k++) {
switch(l) {
case 1: temp(i, j, k) = V.display(i) * M.display(j, k); break;
case 2: temp(i, j, k) = V.display(j) * M.display(k, i); break;
case 3: temp(i, j, k) = V.display(k) * M.display(i, j); break;
default:
ostringstream ii;
ii << "Trying to outer product " << l << "th element of tensor";
throw ii.str();
break;
}
}
return temp;
}
示例6: set
void MssmSusy::set(const DoubleVector & y) {
int i, j, k=0;
for (i=1; i<=3; i++)
for (j=1; j<=3; j++){
k++;
u(i, j) = y.display(k);
d(i, j) = y.display(k+9);
e(i, j) = y.display(k+18);
}
k=27;
for (i=1; i<=3; i++) {
k++;
g(i) = y.display(k);
}
smu = y.display(31);
tanb = y.display(32);
hVev = y.display(33);
}
示例7: gaugegravityBcs2
void gaugegravityBcs2( MssmSoftsusy & m,
const DoubleVector & inputParameters ) {
double alpha1, alpha2 , alpha3 ;
alpha1 = sqr(m.displayGaugeCoupling(1)) / ( 4.0 * PI ) ;
alpha2 = sqr(m.displayGaugeCoupling(2)) / ( 4.0 * PI ) ;
alpha3 = sqr(m.displayGaugeCoupling(3)) / ( 4.0 * PI ) ;
double M_gauge_local ;
M_gauge_local = inputParameters.display(2);
m.setGaugeCoupling( 1, global_g1 );
m.setGaugeCoupling( 2, global_g2 );
m.setGaugeCoupling( 3, global_g3 );
double m1 , m2 , m3 ;
m1 = inter_gaugino1 - N * alpha1 / (4.0*PI) * M_gauge_local ;
m2 = inter_gaugino2 - N * alpha2 / (4.0*PI) * M_gauge_local ;
m3 = inter_gaugino3 - N * alpha3 / (4.0*PI) * M_gauge_local ;
m.setGauginoMass(1, m1) ;
m.setGauginoMass(2, m2) ;
m.setGauginoMass(3, m3) ;
double mqlsq , mllsq, mursq, mdrsq, mersq ;
double mhusq , mhdsq;
double M_gauge_sqr_local;
M_gauge_sqr_local = sqr( M_gauge_local ) ;
mursq = 2.0/sqr( 4.0 * PI )*N * M_gauge_sqr_local *
( 4.0/3.0 * sqr(alpha3) + 0.6 * 4.0 / 9.0 * sqr(alpha1) ) ;
mdrsq = 2.0/sqr( 4.0 * PI )*N * M_gauge_sqr_local *
( 4.0/3.0 * sqr(alpha3) + 0.6 * 1.0 / 9.0 * sqr(alpha1) ) ;
mersq = 2.0/sqr( 4.0 * PI )*N * M_gauge_sqr_local *
( 0.6 * sqr(alpha1) ) ;
mqlsq = 2.0/sqr( 4.0 * PI )*N * M_gauge_sqr_local *
( 4.0/3.0 * sqr(alpha3) + 0.75 * sqr(alpha2) + 0.6 /36.0 * sqr(alpha1)) ;
mllsq = 2.0/sqr( 4.0 * PI )*N * M_gauge_sqr_local *
( 0.75 * sqr(alpha2) + 0.6*0.25 * sqr(alpha1) ) ;
mhusq = mllsq;
mhdsq = mllsq;
DoubleMatrix id(3, 3);
id(1, 1) = 1.0; id(2, 2) = 1.0; id(3, 3) = 1.0;
m.setSoftMassMatrix(mQl, inter_massmQl + mqlsq * id);
m.setSoftMassMatrix(mUr, inter_massmUr + mursq * id);
m.setSoftMassMatrix(mDr, inter_massmDr + mdrsq * id);
m.setSoftMassMatrix(mLl, inter_massmLl + mllsq * id);
m.setSoftMassMatrix(mEr, inter_massmEr + mersq * id);
m.setMh2Squared(inter_massmHu+ mhusq);
m.setMh1Squared(inter_massmHd+ mhdsq);
m.setTrilinearElement(UA, 1, 1, m.displayYukawaElement(YU, 1, 1)
* inter_A_HuQU(1,1));
m.setTrilinearElement(UA, 2, 2, m.displayYukawaElement(YU, 2, 2)
* inter_A_HuQU(2,2));
m.setTrilinearElement(UA, 3, 3, m.displayYukawaElement(YU, 3, 3)
* inter_A_HuQU(3,3));
m.setTrilinearElement(DA, 1, 1, m.displayYukawaElement(YD, 1, 1)
* inter_A_HdQD(1,1));
m.setTrilinearElement(DA, 2, 2, m.displayYukawaElement(YD, 2, 2)
* inter_A_HdQD(2,2));
m.setTrilinearElement(DA, 3, 3, m.displayYukawaElement(YD, 3, 3)
* inter_A_HdQD(3,3));
m.setTrilinearElement(EA, 1, 1, m.displayYukawaElement(YE, 1, 1)
* inter_A_HdLE(1,1));
m.setTrilinearElement(EA, 2, 2, m.displayYukawaElement(YE, 2, 2)
* inter_A_HdLE(2,2));
m.setTrilinearElement(EA, 3, 3, m.displayYukawaElement(YE, 3, 3)
* inter_A_HdLE(3,3));
// cout << "In gaugegravityBcs2" << endl;
// cout << "gaugino(1) = " << inter_gaugino1 << " " << m1 << endl
// << "gaugino(2) = " << inter_gaugino2 << " " << m2 << endl
// << "gaugino(3) = " << inter_gaugino3 << " " << m3 << endl;
// cout << "inter_massmQl + mqlsq * id (3,3) = " << inter_massmQl(3,3) + mqlsq
// << endl;
}
示例8: set
//For communication with outside routines: sets all data by one vector y=1..11.
void QedQcd::set(const DoubleVector & y) {
a(ALPHA) = y.display(1);
a(ALPHAS) = y.display(2);
int i; for (i=3; i<=11; i++)
mf(i-2) = y.display(i);
}