本文整理汇总了C++中Domain::atoms_end方法的典型用法代码示例。如果您正苦于以下问题:C++ Domain::atoms_end方法的具体用法?C++ Domain::atoms_end怎么用?C++ Domain::atoms_end使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Domain
的用法示例。
在下文中一共展示了Domain::atoms_end方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: walksatSolver
boost::unordered_set<Model> MCSat::sampleSat(const Model& initialModel, const Domain& d, boost::mt19937& rng) {
boost::unordered_set<Model> models;
models.insert(initialModel); // always include the initial model
// transform domain into a SAT problem
Domain dSat;
for (Domain::fact_const_iterator it = d.facts_begin(); it != d.facts_end(); it++) {
dSat.addFact(*it);
}
for (Domain::formula_const_iterator it = d.formulas_begin(); it != d.formulas_end(); it++) {
ELSentence s = *it;
s.setHasInfWeight(true);
dSat.addFormula(s);
}
dSat.addAtoms(d.atoms_begin(), d.atoms_end());
// perform UP (if possible)
Domain reduced;
if (useUnitPropagation_) {
try {
reduced = MCSat::applyUP(dSat);
} catch (contradiction& c) {
return models; // can't continue, just return our models which has only one item.
}
} else {
reduced = dSat;
}
// rewrite infinite weighted formulas so they have singular weight
reduced = reduced.replaceInfForms();
// do some random restarts and hope for different models
MWSSolver walksatSolver(walksatIterations_, walksatRandomMoveProb_, &reduced);
for (unsigned int i = 1; i <= walksatNumRandomRestarts_; i++) {
Model iterInitModel = reduced.randomModel(rng); // TODO: better way to make random models
if (reduced.formulas_size() == 0) {
// just add the random model and continue
models.insert(reduced.randomModel(rng));
continue;
}
//std::cout << "--\nFormulas for maxwalksat: ";
//std::copy(reduced.formulas_begin(), reduced.formulas_end(), std::ostream_iterator<ELSentence>(std::cout, ", "));
//std::cout << std::endl;
Model iterModel = walksatSolver.run(rng, iterInitModel);
if (reduced.isFullySatisfied(iterModel)) models.insert(iterModel);
}
return models;
}
示例2: run
void MCSat::run(boost::mt19937& rng) { // TODO: setup using random initial models
if (d_ == 0) {
throw std::logic_error("MCSat::run() - Domain not set");
}
if (sampleStrategy_ == 0) {
throw std::logic_error("MCSat::run() - SampleStrategy not set");
}
samples_.clear();
samples_.reserve(numSamples_);
//std::cout << "initial domain: ";
//d_->printDebugDescription(std::cout);
// first, run unit propagation on our domain to get a new reduced one.
Domain reduced;
if (useUnitPropagation_) {
reduced = MCSat::applyUP(*d_);
} else {
reduced = *d_;
}
//std::cout << "reduced domain: ";
//reduced.printDebugDescription(std::cout);
Model prevModel = (useRandomInitialModels_ ? reduced.randomModel(rng) : reduced.defaultModel());
// do a starting run on the whole problem as our initial sample
//boost::unordered_set<Model> initModels = sampleSat(prevModel, reduced);
//prevModel = *initModels.begin();
Domain prevDomain = reduced;
if (burnInIterations_ == 0) samples_.push_back(prevModel);
unsigned int totalIterations = numSamples_+burnInIterations_;
for (unsigned int iteration = 1; iteration < totalIterations; iteration++) {
std::vector<ELSentence> newSentences;
if ( totalIterations < 20 ||
iteration % (totalIterations / 20) == 0) {
std::cout << (((double)iteration) / ((double) totalIterations))*100 << "% done." << std::endl;
}
sampleStrategy_->sampleSentences(prevModel, reduced, rng, newSentences);
// if (iteration == 1) {
// std::cout << "initial sampled sentences: ";
// std::copy(newSentences.begin(), newSentences.end(), std::ostream_iterator<ELSentence>(std::cout, "\n"));
// std::cout << "initial model:";
// std::cout << prevModel;
// for (Domain::formula_const_iterator it = prevDomain.formulas_begin();
// it != prevDomain.formulas_end();
// it++) {
// std::cout << "formula " << *it << " is satisfied at: " << it->dSatisfied(prevModel, prevDomain) << std::endl;
// }
// std::cin.get();
// }
// make a new domain using new Sentences
Domain curDomain;
curDomain.setMaxInterval(prevDomain.maxInterval());
for (Domain::fact_const_iterator it = prevDomain.facts_begin(); it != prevDomain.facts_end(); it++) {
curDomain.addFact(*it);
}
for (std::vector<ELSentence>::const_iterator it = newSentences.begin(); it != newSentences.end(); it++) {
curDomain.addFormula(*it);
}
curDomain.addAtoms(prevDomain.atoms_begin(), prevDomain.atoms_end());
//
// if (iteration == burnInIterations_ + numSamples_/2) {
// std::cout << "ITERATION: " << iteration << std::endl;
// std::cout << "curDomain";
// curDomain.printDebugDescription(std::cout);
// std::cout << "sampled sentences: ";
// std::copy(newSentences.begin(), newSentences.end(), std::ostream_iterator<ELSentence>(std::cout, "\n"));
// }
boost::unordered_set<Model> curModels = sampleSat(prevModel, curDomain, rng);
assert(!curModels.empty());
// choose a random model
boost::uniform_int<std::size_t> pickModel(0, curModels.size()-1);
boost::unordered_set<Model>::size_type index = pickModel(rng);
boost::unordered_set<Model>::const_iterator it = curModels.begin();
while (index > 0) {
it++;
index--;
}
// add the model
if (iteration >= burnInIterations_) samples_.push_back(*it);
prevModel = *it;
prevDomain = curDomain;
}
}