当前位置: 首页>>代码示例>>C++>>正文


C++ DistanceMatrix::getName方法代码示例

本文整理汇总了C++中DistanceMatrix::getName方法的典型用法代码示例。如果您正苦于以下问题:C++ DistanceMatrix::getName方法的具体用法?C++ DistanceMatrix::getName怎么用?C++ DistanceMatrix::getName使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在DistanceMatrix的用法示例。


在下文中一共展示了DistanceMatrix::getName方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: midpointRooting

void TreeTools::midpointRooting(Tree& tree)
{
    throw Exception("TreeTools::midpointRooting(Tree). This function is deprecated, use TreeTemplateTools::midRoot instead!");
    if (tree.isRooted())
        tree.unroot();
    DistanceMatrix* dist = getDistanceMatrix(tree);
    vector<size_t> pos = MatrixTools::whichMax(dist->asMatrix());
    double dmid = (*dist)(pos[0], pos[1]) / 2;
    int id1 = tree.getLeafId(dist->getName(pos[0]));
    int id2 = tree.getLeafId(dist->getName(pos[1]));
    int rootId = tree.getRootId();
    double d1 = getDistanceBetweenAnyTwoNodes(tree, id1, rootId);
    double d2 = getDistanceBetweenAnyTwoNodes(tree, id2, rootId);
    int current = d2 > d1 ? id2 : id1;
    delete dist;
    double l = tree.getDistanceToFather(current);
    double c = l;
    while (c < dmid)
    {
        current = tree.getFatherId(current);
        l = tree.getDistanceToFather(current);
        c += l;
    }
    tree.newOutGroup(current);
    int brother = tree.getSonsId(tree.getRootId())[1];
    if (brother == current)
        brother = tree.getSonsId(tree.getRootId())[0];
    tree.setDistanceToFather(current, l - (c - dmid));
    tree.setDistanceToFather(brother, c - dmid);
}
开发者ID:BioPP,项目名称:bpp-phyl,代码行数:30,代码来源:TreeTools.cpp

示例2: tl

TreeTemplate<Node>* OptimizationTools::buildDistanceTree(
  DistanceEstimation& estimationMethod,
  AgglomerativeDistanceMethod& reconstructionMethod,
  const ParameterList& parametersToIgnore,
  bool optimizeBrLen,
  const std::string& param,
  double tolerance,
  unsigned int tlEvalMax,
  OutputStream* profiler,
  OutputStream* messenger,
  unsigned int verbose) throw (Exception)
{
  estimationMethod.resetAdditionalParameters();
  estimationMethod.setVerbose(verbose);
  if (param == DISTANCEMETHOD_PAIRWISE)
  {
    ParameterList tmp = estimationMethod.getSubstitutionModel().getIndependentParameters();
    tmp.addParameters(estimationMethod.getRateDistribution().getIndependentParameters());
    tmp.deleteParameters(parametersToIgnore.getParameterNames());
    estimationMethod.setAdditionalParameters(tmp);
  }
  TreeTemplate<Node>* tree = NULL;
  TreeTemplate<Node>* previousTree = NULL;
  bool test = true;
  while (test)
  {
    // Compute matrice:
    if (verbose > 0)
      ApplicationTools::displayTask("Estimating distance matrix", true);
    estimationMethod.computeMatrix();
    DistanceMatrix* matrix = estimationMethod.getMatrix();
    if (verbose > 0)
      ApplicationTools::displayTaskDone();

    // Compute tree:
    if (matrix->size() == 2) {
      //Special case, there is only one possible tree:
      Node* n1 = new Node(0);
      Node* n2 = new Node(1, matrix->getName(0));
      n2->setDistanceToFather((*matrix)(0,0) / 2.);
      Node* n3 = new Node(2, matrix->getName(1));
      n3->setDistanceToFather((*matrix)(0,0) / 2.);
      n1->addSon(n2);
      n1->addSon(n3);
      tree = new TreeTemplate<Node>(n1);
      break;
    }
    if (verbose > 0)
      ApplicationTools::displayTask("Building tree");
    reconstructionMethod.setDistanceMatrix(*matrix);
    reconstructionMethod.computeTree();
    previousTree = tree;
    delete matrix;
    tree = dynamic_cast<TreeTemplate<Node>*>(reconstructionMethod.getTree());
    if (verbose > 0)
      ApplicationTools::displayTaskDone();
    if (previousTree && verbose > 0)
    {
      int rf = TreeTools::robinsonFouldsDistance(*previousTree, *tree, false);
      ApplicationTools::displayResult("Topo. distance with previous iteration", TextTools::toString(rf));
      test = (rf == 0);
      delete previousTree;
    }
    if (param != DISTANCEMETHOD_ITERATIONS)
      break;  // Ends here.

    // Now, re-estimate parameters:
    auto_ptr<SubstitutionModel> model(estimationMethod.getSubstitutionModel().clone());
    auto_ptr<DiscreteDistribution> rdist(estimationMethod.getRateDistribution().clone());
    DRHomogeneousTreeLikelihood tl(*tree,
        *estimationMethod.getData(),
        model.get(),
        rdist.get(),
        true, verbose > 1);
    tl.initialize();
    ParameterList parameters = tl.getParameters();
    if (!optimizeBrLen)
    {
      vector<string> vs = tl.getBranchLengthsParameters().getParameterNames();
      parameters.deleteParameters(vs);
    }
    parameters.deleteParameters(parametersToIgnore.getParameterNames());
    optimizeNumericalParameters(&tl, parameters, NULL, 0, tolerance, tlEvalMax, messenger, profiler, verbose > 0 ? verbose - 1 : 0);
    if (verbose > 0)
    {
      ParameterList tmp = tl.getSubstitutionModelParameters();
      for (unsigned int i = 0; i < tmp.size(); i++)
      {
        ApplicationTools::displayResult(tmp[i].getName(), TextTools::toString(tmp[i].getValue()));
      }
      tmp = tl.getRateDistributionParameters();
      for (unsigned int i = 0; i < tmp.size(); i++)
      {
        ApplicationTools::displayResult(tmp[i].getName(), TextTools::toString(tmp[i].getValue()));
      }
    }
  }
  return tree;
}
开发者ID:matsen,项目名称:bpp-phyl,代码行数:99,代码来源:OptimizationTools.cpp

示例3: _computeTree

string Alignment::_computeTree(DistanceMatrix dists, DistanceMatrix vars) throw (Exception) {
    // Initialization:
    std::map<size_t, Node*> currentNodes_;
    std::vector<double> sumDist_(dists.size());
    double lambda_;

    for (size_t i = 0; i < dists.size(); i++) {
        currentNodes_[i] = new Node(static_cast<int>(i), dists.getName(i));
    }
    int idNextNode = dists.size();
    vector<double> newDist(dists.size());
    vector<double> newVar(dists.size());

    // Build tree:
    while (currentNodes_.size() > 3) {
        // get best pair
        for (std::map<size_t, Node*>::iterator i = currentNodes_.begin(); i != currentNodes_.end(); i++) {
            size_t id = i->first;
            sumDist_[id] = 0;
            for (map<size_t, Node*>::iterator j = currentNodes_.begin(); j != currentNodes_.end(); j++) {
                size_t jd = j->first;
                sumDist_[id] += dists(id, jd);
            }
        }
        vector<size_t> bestPair(2);
        double critMax = std::log(0.);
        for (map<size_t, Node*>::iterator i = currentNodes_.begin(); i != currentNodes_.end(); i++) {
            size_t id = i->first;
            map<size_t, Node*>::iterator j = i;
            j++;
            for ( ; j != currentNodes_.end(); j++) {
                size_t jd = j->first;
                double crit = sumDist_[id] + sumDist_[jd] - static_cast<double>(currentNodes_.size() - 2) * dists(id, jd);
                // cout << "\t" << id << "\t" << jd << "\t" << crit << endl;
                if (crit > critMax) {
                    critMax = crit;
                    bestPair[0] = id;
                    bestPair[1] = jd;
                }
            }
        }
        if (critMax == std::log(0.)) throw Exception("Unexpected error: no maximum criterium found.");

        // get branch lengths for pair
        double ratio = (sumDist_[bestPair[0]] - sumDist_[bestPair[1]]) / static_cast<double>(currentNodes_.size() - 2);
        vector<double> d(2);

        d[0] = std::max(.5 * (dists(bestPair[0], bestPair[1]) + ratio), MIN_BRANCH_LENGTH);
        d[1] = std::max(.5 * (dists(bestPair[0], bestPair[1]) - ratio), MIN_BRANCH_LENGTH);

        Node* best1 = currentNodes_[bestPair[0]];
        Node* best2 = currentNodes_[bestPair[1]];

        // Distances may be used by getParentNodes (PGMA for instance).
        best1->setDistanceToFather(d[0]);
        best2->setDistanceToFather(d[1]);
        Node* parent = new Node(idNextNode++);
        parent->addSon(best1);
        parent->addSon(best2);

        // compute lambda
        lambda_ = 0;
        if (vars(bestPair[0], bestPair[1]) == 0) lambda_ = .5;
        else {
            for (map<size_t, Node*>::iterator i = currentNodes_.begin(); i != currentNodes_.end(); i++) {
                size_t id = i->first;
                if (id != bestPair[0] && id != bestPair[1]) lambda_ += (vars(bestPair[1], id) - vars(bestPair[0], id));
            }
            double div = 2 * static_cast<double>(currentNodes_.size() - 2) * vars(bestPair[0], bestPair[1]);
            lambda_ /= div;
            lambda_ += .5;
        }
        if (lambda_ < 0.) lambda_ = 0.;
        if (lambda_ > 1.) lambda_ = 1.;

        for (map<size_t, Node*>::iterator i = currentNodes_.begin(); i != currentNodes_.end(); i++) {
            size_t id = i->first;
            if (id != bestPair[0] && id != bestPair[1]) {
                newDist[id] = std::max(lambda_ * (dists(bestPair[0], id) - d[0]) + (1 - lambda_) * (dists(bestPair[1], id) - d[1]), 0.);
                newVar[id] = lambda_ * vars(bestPair[0], id) + (1 - lambda_) * vars(bestPair[1], id) - lambda_ * (1 - lambda_) * vars(bestPair[0], bestPair[1]);
            }
          else newDist[id] = 0;
        }
        // Actualize currentNodes_:
        currentNodes_[bestPair[0]] = parent;
        currentNodes_.erase(bestPair[1]);
        for (map<size_t, Node*>::iterator i = currentNodes_.begin(); i != currentNodes_.end(); i++) {
            size_t id = i->first;
            dists(bestPair[0], id) = dists(id, bestPair[0]) = newDist[id];
            vars(bestPair[0], id) =  vars(id, bestPair[0]) = newVar[id];
        }
    }
    // final step
    Node* root = new Node(idNextNode);
    map<size_t, Node* >::iterator it = currentNodes_.begin();
    size_t i1 = it->first;
    Node* n1       = it->second;
    it++;
    size_t i2 = it->first;
    Node* n2       = it->second;
//.........这里部分代码省略.........
开发者ID:kgori,项目名称:bpp,代码行数:101,代码来源:Alignment.cpp


注:本文中的DistanceMatrix::getName方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。