本文整理汇总了C++中Dimensions::begin方法的典型用法代码示例。如果您正苦于以下问题:C++ Dimensions::begin方法的具体用法?C++ Dimensions::begin怎么用?C++ Dimensions::begin使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Dimensions
的用法示例。
在下文中一共展示了Dimensions::begin方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: combineInstruments
/** @brief Combine given list of instruments to one instrument.
*
* Takes a list of @a instruments as argument and combines them to one single
* new @a output instrument. For this task, it will create a dimension of type
* given by @a mainDimension in the new instrument and copies the source
* instruments to those dimension zones.
*
* @param instruments - (input) list of instruments that shall be combined,
* they will only be read, so they will be left untouched
* @param gig - (input/output) .gig file where the new combined instrument shall
* be created
* @param output - (output) on success this pointer will be set to the new
* instrument being created
* @param mainDimension - the dimension that shall be used to combine the
* instruments
* @throw RIFF::Exception on any kinds of errors
*/
static void combineInstruments(std::vector<gig::Instrument*>& instruments, gig::File* gig, gig::Instrument*& output, gig::dimension_t mainDimension) {
output = NULL;
// divide the individual regions to (probably even smaller) groups of
// regions, coping with the fact that the source regions of the instruments
// might have quite different range sizes and start and end points
RegionGroups groups = groupByRegionIntersections(instruments);
#if DEBUG_COMBINE_INSTRUMENTS
std::cout << std::endl << "New regions: " << std::flush;
printRanges(groups);
std::cout << std::endl;
#endif
if (groups.empty())
throw gig::Exception(_("No regions found to create a new instrument with."));
// create a new output instrument
gig::Instrument* outInstr = gig->AddInstrument();
outInstr->pInfo->Name = _("NEW COMBINATION");
// Distinguishing in the following code block between 'horizontal' and
// 'vertical' regions. The 'horizontal' ones are meant to be the key ranges
// in the output instrument, while the 'vertical' regions are meant to be
// the set of source regions that shall be layered to that 'horizontal'
// region / key range. It is important to know, that the key ranges defined
// in the 'horizontal' and 'vertical' regions might differ.
// merge the instruments to the new output instrument
for (RegionGroups::iterator itGroup = groups.begin();
itGroup != groups.end(); ++itGroup) // iterate over 'horizontal' / target regions ...
{
gig::Region* outRgn = outInstr->AddRegion();
outRgn->SetKeyRange(itGroup->first.low, itGroup->first.high);
#if DEBUG_COMBINE_INSTRUMENTS
printf("---> Start target region %d..%d\n", itGroup->first.low, itGroup->first.high);
#endif
// detect the total amount of zones required for the given main
// dimension to build up this combi for current key range
int iTotalZones = 0;
for (RegionGroup::iterator itRgn = itGroup->second.begin();
itRgn != itGroup->second.end(); ++itRgn)
{
gig::Region* inRgn = itRgn->second;
gig::dimension_def_t* def = inRgn->GetDimensionDefinition(mainDimension);
iTotalZones += (def) ? def->zones : 1;
}
#if DEBUG_COMBINE_INSTRUMENTS
printf("Required total zones: %d, vertical regions: %d\n", iTotalZones, itGroup->second.size());
#endif
// create all required dimensions for this output region
// (except the main dimension used for separating the individual
// instruments, we create that particular dimension as next step)
Dimensions dims = getDimensionsForRegionGroup(itGroup->second);
// the given main dimension which is used to combine the instruments is
// created separately after the next code block, and the main dimension
// should not be part of dims here, because it also used for iterating
// all dimensions zones, which would lead to this dimensions being
// iterated twice
dims.erase(mainDimension);
{
std::vector<gig::dimension_t> skipTheseDimensions; // used to prevent a misbehavior (i.e. crash) of the combine algorithm in case one of the source instruments has a dimension with only one zone, which is not standard conform
for (Dimensions::iterator itDim = dims.begin();
itDim != dims.end(); ++itDim)
{
gig::dimension_def_t def;
def.dimension = itDim->first; // dimension type
def.zones = itDim->second.size();
def.bits = zoneCountToBits(def.zones);
if (def.zones < 2) {
addWarning(
"Attempt to create dimension with type=0x%x with only "
"ONE zone (because at least one of the source "
"instruments seems to have such a velocity dimension "
"with only ONE zone, which is odd)! Skipping this "
"dimension for now.",
(int)itDim->first
);
skipTheseDimensions.push_back(itDim->first);
continue;
}
//.........这里部分代码省略.........
示例2: scheduleCopyDimensionRegions
//.........这里部分代码省略.........
);
#endif
assert(srcDimRgn->GetParent() == inRgn);
assert(dstDimRgn->GetParent() == outRgn);
// now that we have access to the precise velocity split zone upper
// limits, we can select the actual source & destination dimension
// regions we need to copy (assuming that source or target region has
// a velocity dimension)
if (outRgn->GetDimensionDefinition(gig::dimension_velocity)) {
// re-select target dimension region (with correct velocity zone)
DimensionZones dstZones = preciseDimensionZonesFor(gig::dimension_velocity, dstDimRgn);
assert(dstZones.size() > 1);
const int iDstZoneIndex =
(mainDim == gig::dimension_velocity)
? iDstMainBit : dstDimCase[gig::dimension_velocity]; // (mainDim == gig::dimension_velocity) exception case probably unnecessary here
e.velocityZone = iDstZoneIndex;
#if DEBUG_COMBINE_INSTRUMENTS
printf("dst velocity zone: %d/%d\n", iDstZoneIndex, (int)dstZones.size());
#endif
assert(uint(iDstZoneIndex) < dstZones.size());
dstDimCase[gig::dimension_velocity] = dstZones[iDstZoneIndex].low; // arbitrary value between low and high
#if DEBUG_COMBINE_INSTRUMENTS
printf("dst velocity value = %d\n", dstDimCase[gig::dimension_velocity]);
printf("dst refilled "); fflush(stdout);
#endif
fillDimValues(dstDimValues, dstDimCase, outRgn, false);
dstDimRgn = outRgn->GetDimensionRegionByValue(dstDimValues);
#if DEBUG_COMBINE_INSTRUMENTS
printf("reselected dstDimRgn=%lx\n", (uint64_t)dstDimRgn);
printf("dstSample='%s'%s\n",
(!dstDimRgn->pSample ? "NULL" : dstDimRgn->pSample->pInfo->Name.c_str()),
(dstDimRgn->pSample ? " <--- ERROR ERROR ERROR !!!!!!!!! " : "")
);
#endif
// re-select source dimension region with correct velocity zone
// (if it has a velocity dimension that is)
if (inRgn->GetDimensionDefinition(gig::dimension_velocity)) {
DimensionZones srcZones = preciseDimensionZonesFor(gig::dimension_velocity, srcDimRgn);
e.totalSrcVelocityZones = srcZones.size();
assert(srcZones.size() > 0);
if (srcZones.size() <= 1) {
addWarning("Input region has a velocity dimension with only ONE zone!");
}
int iSrcZoneIndex =
(mainDim == gig::dimension_velocity)
? iSrcMainBit : iDstZoneIndex;
if (uint(iSrcZoneIndex) >= srcZones.size())
iSrcZoneIndex = srcZones.size() - 1;
srcDimCase[gig::dimension_velocity] = srcZones[iSrcZoneIndex].low; // same zone as used above for target dimension region (no matter what the precise zone ranges are)
#if DEBUG_COMBINE_INSTRUMENTS
printf("src refilled "); fflush(stdout);
#endif
fillDimValues(srcDimValues, srcDimCase, inRgn, false);
srcDimRgn = inRgn->GetDimensionRegionByValue(srcDimValues);
#if DEBUG_COMBINE_INSTRUMENTS
printf("reselected srcDimRgn=%lx\n", (uint64_t)srcDimRgn);
printf("srcSample='%s'\n",
(!srcDimRgn->pSample ? "NULL" : srcDimRgn->pSample->pInfo->Name.c_str())
);
#endif
}
}
// Schedule copy operation of source -> target DimensionRegion for the
// time after all nested loops have been traversed. We have to postpone
// the actual copy operations this way, because otherwise it would
// overwrite informations inside the destination DimensionRegion object
// that we need to read in the code block above.
e.src = srcDimRgn;
e.dst = dstDimRgn;
schedule->push_back(e);
return; // returning from deepest level of function recursion
}
// Copying n dimensions requires n nested loops. That's why this function
// is calling itself recursively to provide the required amount of nested
// loops. With each call it pops from argument 'dims' and pushes to
// argument 'dimCase'.
Dimensions::iterator itDimension = dims.begin();
gig::dimension_t type = itDimension->first;
DimensionZones zones = itDimension->second;
dims.erase(itDimension);
int iZone = 0;
for (DimensionZones::iterator itZone = zones.begin();
itZone != zones.end(); ++itZone, ++iZone)
{
DLS::range_t zoneRange = *itZone;
gig::dimension_def_t* def = outRgn->GetDimensionDefinition(type);
dimCase[type] = (def->split_type == gig::split_type_bit) ? iZone : zoneRange.low;
// recurse until 'dims' is exhausted (and dimCase filled up with concrete value)
scheduleCopyDimensionRegions(outRgn, inRgn, dims, mainDim, iDstMainBit, iSrcMainBit, schedule, dimCase);
}
}