当前位置: 首页>>代码示例>>C++>>正文


C++ DeviceDescriptor::Type方法代码示例

本文整理汇总了C++中DeviceDescriptor::Type方法的典型用法代码示例。如果您正苦于以下问题:C++ DeviceDescriptor::Type方法的具体用法?C++ DeviceDescriptor::Type怎么用?C++ DeviceDescriptor::Type使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在DeviceDescriptor的用法示例。


在下文中一共展示了DeviceDescriptor::Type方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: TestCheckpointing

void TestCheckpointing(const DeviceDescriptor& device)
{
    auto featureStreamName = L"features";
    auto labelsStreamName = L"labels";

    size_t inputDim = 784;
    size_t numOutputClasses = 10;
    auto features1 = InputVariable({ inputDim }, false /*isSparse*/, DataType::Float, featureStreamName);
    auto labels1 = InputVariable({ numOutputClasses }, DataType::Float, labelsStreamName);
    auto net1_1 = BuildFFClassifierNet(features1, numOutputClasses, device, 1);
    FunctionPtr net1_2;

    if (device.Type() == DeviceKind::GPU)
    {
        // TODO: instead of cloning here, reset curand generator to make sure that parameters are initialized to the same state.
        for (auto& p : net1_1->Parameters()) 
        {
            // make sure all parameters are initialized
            assert(p.Value() != nullptr);
        }
        net1_2 = net1_1->Clone();
    }
    else 
    {
        net1_2 = BuildFFClassifierNet(features1, numOutputClasses, device, 1);
    }

    auto minibatchSource1 = TextFormatMinibatchSource(L"Train-28x28_cntk_text.txt", { { featureStreamName, inputDim }, { labelsStreamName, numOutputClasses } },  1000, false);

    TestTrainingWithCheckpointing(net1_1, net1_2, labels1, minibatchSource1, device);

    inputDim = 2000;
    numOutputClasses = 5;
    auto features2 = InputVariable({ inputDim }, true /*isSparse*/, DataType::Float, featureStreamName);
    auto labels2 = InputVariable({ numOutputClasses }, DataType::Float, labelsStreamName, { Axis::DefaultBatchAxis() });
    auto net2_1 = BuildLSTMClassifierNet(features2, numOutputClasses, device, 1);
    FunctionPtr net2_2;

    if (device.Type() == DeviceKind::GPU)
    {
        // TODO: instead of cloning here, reset curand generator to make sure that parameters are initialized to the same state.
        for (auto& p : net2_1->Parameters()) 
        {
            // make sure all parameters are initialized
            assert(p.Value() != nullptr);
        }
        net2_2 = net2_1->Clone();
    }
    else 
    {
        net2_2 = BuildLSTMClassifierNet(features2, numOutputClasses, device, 1);
    }

    auto minibatchSource2 = TextFormatMinibatchSource(L"Train.ctf", { { featureStreamName, inputDim, true, L"x" }, {  labelsStreamName, numOutputClasses, false, L"y" } }, 1000, false);

    TestTrainingWithCheckpointing(net2_1, net2_2, labels2, minibatchSource2, device);
}
开发者ID:shadrack4292,项目名称:CNTK,代码行数:57,代码来源:SerializationTests.cpp

示例2: Initialize

    void MPICommunicatorImpl::Initialize(const std::vector<NDArrayViewPtr>& values)
    {
        assert(CPUDEVICE < 0); // just in case somebody decides to change CPUDEVICE macro.
        DeviceDescriptor lastGpuDevice = DeviceDescriptor::CPUDevice();
        m_gpuDataTransferers.resize(values.size());
        m_intermediateCPUBuffers.resize(values.size());
        for (auto i = 0; i < values.size(); ++i)
        {
            auto view = values[i];
            auto device = view->Device();

            // Make sure none of the values are sparse - we currently do not support aggregation of sparse matrices
            if (view->GetStorageFormat() != StorageFormat::Dense)
                RuntimeError("Aggregation for sparse matrices is currently not supported!");

            // TODO: device.Type should be called Kind.
            if (device.Type() != DeviceKind::GPU)
            {
                m_intermediateCPUBuffers[i] = Buffer();
                m_gpuDataTransferers[i] = nullptr;
            }
            else
            {
                if (lastGpuDevice.Type() == DeviceKind::CPU)
                    lastGpuDevice = device;
                else if (device.Id() != lastGpuDevice.Id()) // For the time being, assume all devices have the same id.
                    LogicError("Not all values are on the same GPU device id");

                auto requiredSize = GetBufferSize(view);
                m_gpuDataTransferers[i] = std::make_shared<GPUDataTransferer>(device.Id(), true);
                if (m_intermediateCPUBuffers[i].totalSize < requiredSize)
                    m_intermediateCPUBuffers[i] = AllocateIntermediateBuffer(device.Id(), requiredSize);
            }
        }
    }
开发者ID:rlugojr,项目名称:CNTK,代码行数:35,代码来源:DistributedCommunicator.cpp

示例3: TestFunctionsForEquality

void TestFunctionsForEquality(const DeviceDescriptor& device)
{
    // TODO: add GPU version (need to reset cuda random generator each time a new function is created).
    assert(device.Type() == DeviceKind::CPU);

    auto inputVar = InputVariable({ 2 }, false, DataType::Float, L"features");

    auto f1 = BuildFFClassifierNet(inputVar, 3, device, /*seed*/ 1);
    auto f2 = BuildFFClassifierNet(inputVar, 3, device, /*seed*/ 1);
    if (!AreEqual(f1, f2))
    {
        throw std::runtime_error("TestFunctionsForEquality: two functions built with the same seed values are not identical.");
    }

    auto f3 = BuildFFClassifierNet(inputVar, 3, device, /*seed*/ 2);
    auto f4 = BuildFFClassifierNet(inputVar, 3, device, /*seed*/ 3);
    if (AreEqual(f3, f4))
    {
        throw std::runtime_error("TestFunctionsForEquality: two functions built with different seed values are identical.");
    }
}
开发者ID:shadrack4292,项目名称:CNTK,代码行数:21,代码来源:SerializationTests.cpp

示例4: TestTimesAndPlus

void TestTimesAndPlus(size_t inputDim,
                      size_t outputDim,
                      size_t numSamples,
                      const DeviceDescriptor& device,
                      size_t numIterations,
                      bool usePreAllocatedOutputs,
                      bool outputOnSpecifiedDevice,
                      bool testSaveAndReLoad,
                      unsigned int seed = 1)
{
    Parameter timesParam(MakeSharedObject<NDArrayView>((ElementType)0.5, NDShape({ outputDim, inputDim }), device), L"timesParameters");
    Parameter plusParam(MakeSharedObject<NDArrayView>((ElementType)1.2, std::initializer_list<size_t>({ outputDim }), device), L"plusParameters");

    Variable inputVar({ inputDim }, AsDataType<ElementType>(), L"input");
    auto timesAndPlusFunc = Plus(plusParam, Times(timesParam, inputVar));

    if (testSaveAndReLoad)
        SaveAndReloadModel<ElementType>(timesAndPlusFunc, { &inputVar, &timesParam, &plusParam }, device);

    srand(seed);
    for (size_t iterIdx = 0; iterIdx < numIterations; ++iterIdx)
    {
        std::vector<ElementType> inputData(inputDim * numSamples);
        for (size_t i = 0; i < inputData.size(); ++i)
            inputData[i] = ((ElementType)rand()) / RAND_MAX;

        NDShape inputShape = inputVar.Shape().AppendShape({ 1, numSamples });
        ValuePtr inputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(inputShape, inputData.data(), inputData.size(), DeviceDescriptor::CPUDevice(), true));

        NDShape outputShape = timesAndPlusFunc->Output().Shape().AppendShape({ 1, numSamples });
        std::vector<ElementType> outputData(outputShape.TotalSize());
        ValuePtr outputValue;
        if (usePreAllocatedOutputs)
        {
            auto outputAllocationDevice = outputOnSpecifiedDevice ? device : DeviceDescriptor::CPUDevice();
            if (outputAllocationDevice.Type() == DeviceKind::CPU)
                outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputShape, outputData.data(), outputData.size(), outputAllocationDevice, false));
            else
                outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), outputShape, outputAllocationDevice));
        }

        std::unordered_map<Variable, ValuePtr> outputs = { { timesAndPlusFunc->Output(), outputValue } };
        auto backpropState = timesAndPlusFunc->Forward({ { inputVar, inputValue } }, outputs, device, { timesAndPlusFunc->Output() });

        if (!usePreAllocatedOutputs)
            outputValue = outputs[timesAndPlusFunc->Output()];

        // Perform backprop
        std::vector<ElementType> rootGradientsData(outputShape.TotalSize(), 1);
        ValuePtr rootGradientValue;
        if (device.Type() == DeviceKind::CPU)
            rootGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputShape, rootGradientsData.data(), rootGradientsData.size(), device, true));
        else
        {
            NDArrayViewPtr cpuArrayView = MakeSharedObject<NDArrayView>(outputShape, rootGradientsData.data(), rootGradientsData.size(), DeviceDescriptor::CPUDevice(), true);
            NDArrayViewPtr gpuArrayView = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), outputShape, device);
            gpuArrayView->CopyFrom(*cpuArrayView);
            rootGradientValue = MakeSharedObject<Value>(gpuArrayView);
        }

        std::vector<ElementType> plusParameterGradientData(plusParam.Shape().TotalSize());
        std::vector<ElementType> timesParameterGradientData(timesParam.Shape().TotalSize());
        ValuePtr plusParameterGradientValue, timesParameterGradientValue;
        if (usePreAllocatedOutputs)
        {
            auto outputAllocationDevice = outputOnSpecifiedDevice ? device : DeviceDescriptor::CPUDevice();
            if (outputAllocationDevice.Type() == DeviceKind::CPU)
            {
                plusParameterGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(plusParam.Shape(), plusParameterGradientData.data(), plusParameterGradientData.size(), outputAllocationDevice, false));
                timesParameterGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(timesParam.Shape(), timesParameterGradientData.data(), timesParameterGradientData.size(), outputAllocationDevice, false));
            }
            else
            {
                plusParameterGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), plusParam.Shape(), outputAllocationDevice));
                timesParameterGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), timesParam.Shape(), outputAllocationDevice));
            }
        }

        std::unordered_map<Variable, ValuePtr> paramGradients = { { plusParam, plusParameterGradientValue }, { timesParam, timesParameterGradientValue } };
        timesAndPlusFunc->Backward(backpropState, { { timesAndPlusFunc->Output(), rootGradientValue } }, paramGradients);

        if (!usePreAllocatedOutputs)
        {
            plusParameterGradientValue = paramGradients[plusParam];
            timesParameterGradientValue = paramGradients[timesParam];
        }

        // Verify forward prop results
        if (!usePreAllocatedOutputs || (outputOnSpecifiedDevice && (device.Type() != DeviceKind::CPU)))
        {
            NDArrayViewPtr cpuArrayView = MakeSharedObject<NDArrayView>(outputShape, outputData.data(), outputData.size(), DeviceDescriptor::CPUDevice(), false);
            cpuArrayView->CopyFrom(*outputValue->Data());
        }

        std::vector<ElementType> expectedOutputValues(outputShape.TotalSize());
        for (size_t i = 0; i < numSamples; ++i)
        {
            ElementType expectedVal = (ElementType)1.2;
            for (size_t j = 0; j < inputDim; ++j)
                expectedVal += (ElementType)(inputData[i * inputDim + j] * 0.5);
//.........这里部分代码省略.........
开发者ID:DanielMerget,项目名称:CNTK,代码行数:101,代码来源:FeedForwardTests.cpp

示例5: TestNDArrayView

void TestNDArrayView(size_t numAxes, const DeviceDescriptor& device)
{
    srand(1);

    size_t maxDimSize = 15;
    NDShape viewShape(numAxes);
    for (size_t i = 0; i < numAxes; ++i)
        viewShape[i] = (rand() % maxDimSize) + 1;

    // Create a NDArrayView over a std::array
    std::array<ElementType, 1> arrayData = { 3 };
    auto arrayDataView = MakeSharedObject<NDArrayView>(NDShape({}), arrayData);
    if (arrayDataView->template DataBuffer<ElementType>() != arrayData.data())
        throw std::runtime_error("The DataBuffer of the NDArrayView does not match the original buffer it was created over");

    std::vector<ElementType> data(viewShape.TotalSize());
    ElementType scale = 19.0;
    ElementType offset = -4.0;
    for (size_t i = 0; i < viewShape.TotalSize(); ++i)
        data[i] = offset + ((((ElementType)rand()) / RAND_MAX) * scale);

    auto cpuDataView = MakeSharedObject<NDArrayView>(viewShape, data);
    if (cpuDataView->template DataBuffer<ElementType>() != data.data())
        throw std::runtime_error("The DataBuffer of the NDArrayView does not match the original buffer it was created over");

    NDArrayViewPtr dataView;
    if ((device.Type() == DeviceKind::CPU))
        dataView = cpuDataView;
    else
    {
        dataView = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), viewShape, device);
        dataView->CopyFrom(*cpuDataView);
    }

    if (dataView->Device() != device)
        throw std::runtime_error("Device of NDArrayView does not match 'device' it was created on");

    // Test clone
    auto clonedView = dataView->DeepClone(false);
    ElementType* first = nullptr;
    const ElementType* second = cpuDataView->template DataBuffer<ElementType>();
    NDArrayViewPtr temp1CpuDataView, temp2CpuDataView;
    if ((device.Type() == DeviceKind::CPU))
    {
        if (dataView->DataBuffer<ElementType>() != data.data())
            throw std::runtime_error("The DataBuffer of the NDArrayView does not match the original buffer it was created over");

        first = clonedView->WritableDataBuffer<ElementType>();
    }
    else
    {
        temp1CpuDataView = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), viewShape, DeviceDescriptor::CPUDevice());
        temp1CpuDataView->CopyFrom(*clonedView);

        first = temp1CpuDataView->WritableDataBuffer<ElementType>();
    }

    for (size_t i = 0; i < viewShape.TotalSize(); ++i)
    {
        if (first[i] != second[i])
            throw std::runtime_error("The contents of the clone do not match expected");
    }

    first[0] += 1;
    if ((device.Type() != DeviceKind::CPU))
        clonedView->CopyFrom(*temp1CpuDataView);

    if ((device.Type() == DeviceKind::CPU))
    {
        first = clonedView->WritableDataBuffer<ElementType>();
        second = dataView->DataBuffer<ElementType>();
    }
    else
    {
        temp1CpuDataView = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), viewShape, DeviceDescriptor::CPUDevice());
        temp1CpuDataView->CopyFrom(*clonedView);
        first = temp1CpuDataView->WritableDataBuffer<ElementType>();

        temp2CpuDataView = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), viewShape, DeviceDescriptor::CPUDevice());
        temp2CpuDataView->CopyFrom(*dataView);
        second = temp2CpuDataView->DataBuffer<ElementType>();
    }

    if (first[0] != (second[0] + 1))
        throw std::runtime_error("The clonedView's contents do not match expected");

    // Test alias
    auto aliasView = clonedView->Alias(true);
    const ElementType* aliasViewBuffer = aliasView->DataBuffer<ElementType>();
    const ElementType* clonedDataBuffer = clonedView->DataBuffer<ElementType>();
    if (aliasViewBuffer != clonedDataBuffer)
        throw std::runtime_error("The buffers underlying the alias view and the view it is an alias of are different!");

    clonedView->CopyFrom(*dataView);
    if (aliasViewBuffer != clonedDataBuffer)
        throw std::runtime_error("The buffers underlying the alias view and the view it is an alias of are different!");

    // Test readonliness
    auto errorMsg = "Was incorrectly able to get a writable buffer pointer from a readonly view";

//.........这里部分代码省略.........
开发者ID:hahatt,项目名称:CNTK,代码行数:101,代码来源:NDArrayViewTests.cpp


注:本文中的DeviceDescriptor::Type方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。