当前位置: 首页>>代码示例>>C++>>正文


C++ DeviceDescriptor::Id方法代码示例

本文整理汇总了C++中DeviceDescriptor::Id方法的典型用法代码示例。如果您正苦于以下问题:C++ DeviceDescriptor::Id方法的具体用法?C++ DeviceDescriptor::Id怎么用?C++ DeviceDescriptor::Id使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在DeviceDescriptor的用法示例。


在下文中一共展示了DeviceDescriptor::Id方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: Initialize

    void MPICommunicatorImpl::Initialize(const std::vector<NDArrayViewPtr>& values)
    {
        assert(CPUDEVICE < 0); // just in case somebody decides to change CPUDEVICE macro.
        DeviceDescriptor lastGpuDevice = DeviceDescriptor::CPUDevice();
        m_gpuDataTransferers.resize(values.size());
        m_intermediateCPUBuffers.resize(values.size());
        for (auto i = 0; i < values.size(); ++i)
        {
            auto view = values[i];
            auto device = view->Device();

            // Make sure none of the values are sparse - we currently do not support aggregation of sparse matrices
            if (view->GetStorageFormat() != StorageFormat::Dense)
                RuntimeError("Aggregation for sparse matrices is currently not supported!");

            // TODO: device.Type should be called Kind.
            if (device.Type() != DeviceKind::GPU)
            {
                m_intermediateCPUBuffers[i] = Buffer();
                m_gpuDataTransferers[i] = nullptr;
            }
            else
            {
                if (lastGpuDevice.Type() == DeviceKind::CPU)
                    lastGpuDevice = device;
                else if (device.Id() != lastGpuDevice.Id()) // For the time being, assume all devices have the same id.
                    LogicError("Not all values are on the same GPU device id");

                auto requiredSize = GetBufferSize(view);
                m_gpuDataTransferers[i] = std::make_shared<GPUDataTransferer>(device.Id(), true);
                if (m_intermediateCPUBuffers[i].totalSize < requiredSize)
                    m_intermediateCPUBuffers[i] = AllocateIntermediateBuffer(device.Id(), requiredSize);
            }
        }
    }
开发者ID:rlugojr,项目名称:CNTK,代码行数:35,代码来源:DistributedCommunicator.cpp

示例2: MultiThreadsEvaluationWithClone

/// <summary>
/// Shows how to use Clone() to share function parameters among multi evaluation threads.
/// </summary>
/// <description>
/// It first creates a new function with parameters, then spawns multi threads. Each thread uses Clone() to create a new
/// instance of function and then use this instance to do evaluation.
/// All cloned functions share the same parameters.
/// </description>
void MultiThreadsEvaluationWithClone(const DeviceDescriptor& device, const int threadCount)
{
    using namespace std::placeholders;

    const size_t inputDim = 937;
    const size_t numOutputClasses = 9304;
    const size_t numHiddenLayers = 6;
    const size_t hiddenLayersDim = 2048;

    auto inputVar = InputVariable({inputDim}, DataType::Float, L"features");

    assert(numHiddenLayers >= 1);
    auto classifierRoot = SetupFullyConnectedDNNLayer(inputVar, hiddenLayersDim, device, std::bind(Sigmoid, _1, L""));
    for (size_t i = 1; i < numHiddenLayers; ++i)
    {
        classifierRoot = SetupFullyConnectedDNNLayer(classifierRoot, hiddenLayersDim, device, std::bind(Sigmoid, _1, L""));
    }

    auto outputTimesParam = Parameter(NDArrayView::RandomUniform<float>({numOutputClasses, hiddenLayersDim}, -0.5, 0.5, 1, device));
    auto classifierFunc = Times(outputTimesParam, classifierRoot, L"classifierOutput");

    // Now test the structure
    if (classifierFunc->Parameters().size() != ((numHiddenLayers * 2) + 1))
    {
        throw std::runtime_error("MultiThreadsEvaluationWithClone: Function does not have expected Parameter count");
    }

    OutputFunctionInfo(classifierFunc);
    fprintf(stderr, "MultiThreadsEvaluationWithClone on device=%d\n", device.Id());

    // Run evaluation in parallel
    std::vector<std::thread> threadList(threadCount);
    for (int th = 0; th < threadCount; ++th)
    {
        threadList[th] = std::thread(RunEvaluationClassifier, classifierFunc->Clone(), device);
    }

    for (int th = 0; th < threadCount; ++th)
    {
        threadList[th].join();
        fprintf(stderr, "thread %d joined.\n", th);
        fflush(stderr);
    }
}
开发者ID:Soukiy,项目名称:CNTK,代码行数:52,代码来源:EvalMultithreads.cpp

示例3: MultiThreadsEvaluationWithLoadModel

/// <summary>
/// Shows how to use LoadLegacyModel() and Clone() to share function parameters among multi evaluation threads.
/// </summary>
/// <description>
/// It first loads a model, then spawns multi threads. Each thread uses Clone() to create a new
/// instance of function and then use this instance to do evaluation.
/// All cloned functions share the same parameters.
/// Note: It uses the model trained by Examples\Image\GettingStarted\01_OneHidden.cntk as example. Instructions
/// to train the model is described in Examples\Image\GettingStarted\README.md. 
/// The pre-trained model file 01_OneHidden needs to be in the current directory.  
/// </description>
void MultiThreadsEvaluationWithLoadModel(const DeviceDescriptor& device, const int threadCount)
{
    // The model file will be trained and copied to the current runtime directory first.
    auto modelFuncPtr = CNTK::Function::LoadModel(DataType::Float, L"01_OneHidden", device);


    OutputFunctionInfo(modelFuncPtr);
    fprintf(stderr, "MultiThreadsEvaluationWithLoadModel on device=%d\n", device.Id());

    // Run evaluation in parallel.
    std::vector<std::thread> threadList(threadCount);
    for (int th = 0; th < threadCount; ++th)
    {
        threadList[th] = std::thread(RunEvaluationOneHidden, modelFuncPtr->Clone(), device);
    }

    for (int th = 0; th < threadCount; ++th)
    {
        threadList[th].join();
        fprintf(stderr, "thread %d joined.\n", th);
        fflush(stderr);
    }
}
开发者ID:Soukiy,项目名称:CNTK,代码行数:34,代码来源:EvalMultithreads.cpp


注:本文中的DeviceDescriptor::Id方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。