当前位置: 首页>>代码示例>>C++>>正文


C++ Datum::label方法代码示例

本文整理汇总了C++中Datum::label方法的典型用法代码示例。如果您正苦于以下问题:C++ Datum::label方法的具体用法?C++ Datum::label怎么用?C++ Datum::label使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Datum的用法示例。


在下文中一共展示了Datum::label方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: load_batch

void load_batch(int batch_size, int crop_w, int crop_h,
                Image<float> &data, Image<int> &labels,
                db::Cursor* cur) {

    assert(data.extent(0) == crop_w);
    assert(data.extent(1) == crop_h);
    assert(data.extent(3) == batch_size);
    assert(labels.extent(0) == batch_size);

    for (int n = 0; n < batch_size; n++) {
        Datum datum;
        datum.ParseFromString(cur->value());

        cv::Mat img;
        img = DatumToCVMat(datum);

        assert(crop_w <= img.rows);
        assert(crop_h <= img.cols);

        labels(n) = datum.label();

        for (int h = 0; h < crop_h; h++)
            for (int w = 0; w < crop_w; w++)
                for (int c = 0; c < 3; c++)
                    data(w, h, c, n) = (float)img.at<cv::Vec3b>(h, w)[c];

        cur->Next();
    }
}
开发者ID:Dhruva6,项目名称:Halide-NN,代码行数:29,代码来源:utils.cpp

示例2: img__

void ImageDataSLLayer<Dtype>::InternalThreadEntry() {
  Datum datum;
  CHECK(this->prefetch_data_.count());
  Dtype* top_data = this->prefetch_data_.mutable_cpu_data();
  Dtype* top_label = this->prefetch_label_.mutable_cpu_data();
  ImageDataParameter image_data_param = this->layer_param_.image_data_param();
  const int batch_size = image_data_param.batch_size();
  const int new_height = image_data_param.new_height();
  const int new_width = image_data_param.new_width();

  // datum scales
  const int lines_size = lines_.size();
  for (int item_id = 0; item_id < batch_size; ++item_id) {
    // get a blob
    CHECK_GT(lines_size, lines_id_);
    if (!ReadImageToDatumSL(lines_[lines_id_].first,
          lines_[lines_id_].second,
          new_height, new_width, &datum)) {
      continue;
    }

    // Apply transformations (mirror, crop...) to the data
    this->data_transformer_.Transform(item_id, datum, this->mean_, top_data);
    for(int i = 0; i < 128 * 128; i++){
    	//LOG(INFO) << datum.label(i);
    	top_label[item_id * 128 * 128 + i] = datum.label(i);
    }

#if 0
	if (count_4 % 100 == 0) {
		const int img_size = 256;
		cv::Mat img__(img_size, img_size, CV_8UC1);
		//cv::resize(cv_img_2, img__, cv::Size(64, 64));
		int i__ = 0;
		for (int h = 0; h < img_size; h++) {
			for (int w = 0; w < img_size; w++) {

				img__.at<unsigned char>(h, w) = top_data[256 * 256 * 3 + i__];
				i__++;
			}
		}
		cv::imshow("seg", img__);
		cv::waitKey(0);
	}

	count_4 = (count_4 + 1) % 10000;
#endif
    // go to the next iter
    lines_id_++;
    if (lines_id_ >= lines_size) {
      // We have reached the end. Restart from the first.
      DLOG(INFO) << "Restarting data prefetching from start.";
      lines_id_ = 0;
      if (this->layer_param_.image_data_param().shuffle()) {
        ShuffleImages();
      }
    }
  }
}
开发者ID:caomw,项目名称:DISC,代码行数:59,代码来源:image_data_sl_layer.cpp

示例3:

TEST_F(IOTest, TestReadFileToDatum) {
  string filename = EXAMPLES_SOURCE_DIR "images/cat.jpg";
  Datum datum;
  EXPECT_TRUE(ReadFileToDatum(filename, &datum));
  EXPECT_TRUE(datum.encoded());
  EXPECT_EQ(datum.label(), -1);
  EXPECT_EQ(datum.data().size(), 140391);
}
开发者ID:azrael417,项目名称:caffe,代码行数:8,代码来源:test_io.cpp

示例4: CHECK

void DataLayer<Dtype>::InternalThreadEntry() {
  CPUTimer batch_timer;
  batch_timer.Start();
  double read_time = 0;
  double trans_time = 0;
  CPUTimer timer;
  CHECK(this->prefetch_data_.count());
  CHECK(this->transformed_data_.count());

  // Reshape according to the first datum of each batch
  // on single input batches allows for inputs of varying dimension.
  const int batch_size = this->layer_param_.data_param().batch_size();
  Datum datum;
  datum.ParseFromString(cursor_->value());
  // Use data_transformer to infer the expected blob shape from datum.
  vector<int> top_shape = this->data_transformer_->InferBlobShape(datum);
  this->transformed_data_.Reshape(top_shape);
  // Reshape prefetch_data according to the batch_size.
  top_shape[0] = batch_size;
  this->prefetch_data_.Reshape(top_shape);

  Dtype* top_data = this->prefetch_data_.mutable_cpu_data();
  Dtype* top_label = NULL;  // suppress warnings about uninitialized variables

  if (this->output_labels_) {
    top_label = this->prefetch_label_.mutable_cpu_data();
  }
  timer.Start();
  for (int item_id = 0; item_id < batch_size; ++item_id) {
    // get a datum
    Datum datum;
    datum.ParseFromString(cursor_->value());
    read_time += timer.MicroSeconds();
    timer.Start();
    // Apply data transformations (mirror, scale, crop...)
    int offset = this->prefetch_data_.offset(item_id);
    this->transformed_data_.set_cpu_data(top_data + offset);
    this->data_transformer_->Transform(datum, &(this->transformed_data_));
    // Copy label.
    if (this->output_labels_) {
      top_label[item_id] = datum.label();
    }
    trans_time += timer.MicroSeconds();
    timer.Start();
    // go to the next item.
    cursor_->Next();
    if (!cursor_->valid()) {
      DLOG(INFO) << "Restarting data prefetching from start.";
      cursor_->SeekToFirst();
    }
  }
  timer.Stop();
  batch_timer.Stop();
  DLOG(INFO) << "Prefetch batch: " << batch_timer.MilliSeconds() << " ms.";
  DLOG(INFO) << "     Read time: " << read_time / 1000 << " ms.";
  DLOG(INFO) << "Transform time: " << trans_time / 1000 << " ms.";
}
开发者ID:jliangqiu,项目名称:caffe-windows,代码行数:57,代码来源:data_layer.cpp

示例5: GetLabelsKeysMap

  void GetLabelsKeysMap(map<int, vector<MDB_val> >* labels_keys, vector<int>* labels) {
    LMDBCursor::SeekToFirst();
    labels_keys->clear();
    while (valid()) {
      Datum datum;
      datum.ParseFromString(LMDBCursor::value());
      int label = datum.label();     
      (*labels_keys)[label].push_back(mdb_key_);     
      LMDBCursor::Next();
    }

    for(map<int,vector<MDB_val> >::iterator it = labels_keys->begin(); it != labels_keys->end(); ++it) {
	labels->push_back(it->first);
    } 
  }
开发者ID:madiken,项目名称:skaffe_private_old,代码行数:15,代码来源:db.hpp

示例6: assert

bool MostCV::LevelDBReader::GetNextEntry(string &key, vector<double> &retVec, int &label) {
  if (!database_iter_->Valid())
    return false;

  Datum datum;
  datum.clear_float_data();
  datum.clear_data();
  datum.ParseFromString(database_iter_->value().ToString());

  key = database_iter_->key().ToString();
  label = datum.label();

  int expected_data_size = std::max<int>(datum.data().size(), datum.float_data_size());
  const int datum_volume_size = datum.channels() * datum.height() * datum.width();
  if (expected_data_size != datum_volume_size) {
    cout << "Something wrong in saved data.";
    assert(false);
  }

  retVec.resize(datum_volume_size);

  const string& data = datum.data();
  if (data.size() != 0) {
    // Data stored in string, e.g. just pixel values of 196608 = 256 * 256 * 3
    for (int i = 0; i < datum_volume_size; ++i)
      retVec[i] = data[i];
  } else {
    // Data stored in real feature vector such as 4096 from feature extraction
    for (int i = 0; i < datum_volume_size; ++i)
      retVec[i] = datum.float_data(i);
  }

  database_iter_->Next();
  ++record_idx_;

  return true;
}
开发者ID:mostafa-saad,项目名称:deep-activity-rec,代码行数:37,代码来源:leveldb-reader.cpp

示例7: CHECK

void DataLayer<Dtype>::InternalThreadEntry() {
  CPUTimer batch_timer;
  batch_timer.Start();
  double read_time = 0;
  double trans_time = 0;
  CPUTimer timer;
  CHECK(this->prefetch_data_.count());
  CHECK(this->transformed_data_.count());

  // Reshape on single input batches for inputs of varying dimension.
  const int batch_size = this->layer_param_.data_param().batch_size();
  const int crop_size = this->layer_param_.transform_param().crop_size();
  if (batch_size == 1 && crop_size == 0) {
    Datum datum;
    datum.ParseFromString(cursor_->value());
    this->prefetch_data_.Reshape(1, datum.channels(),
        datum.height(), datum.width());
    this->transformed_data_.Reshape(1, datum.channels(),
        datum.height(), datum.width());
  }

  Dtype* top_data = this->prefetch_data_.mutable_cpu_data();
  Dtype* top_label = NULL;  // suppress warnings about uninitialized variables

  if (this->output_labels_) {
    top_label = this->prefetch_label_.mutable_cpu_data();
  }
  bool force_color = this->layer_param_.data_param().force_encoded_color();
  for (int item_id = 0; item_id < batch_size; ++item_id) {
    timer.Start();
    // get a blob
    Datum datum;
    datum.ParseFromString(cursor_->value());

    cv::Mat cv_img;
    if (datum.encoded()) {
      if (force_color) {
        cv_img = DecodeDatumToCVMat(datum, true);
      } else {
        cv_img = DecodeDatumToCVMatNative(datum);
      }
      if (cv_img.channels() != this->transformed_data_.channels()) {
        LOG(WARNING) << "Your dataset contains encoded images with mixed "
        << "channel sizes. Consider adding a 'force_color' flag to the "
        << "model definition, or rebuild your dataset using "
        << "convert_imageset.";
      }
    }
    read_time += timer.MicroSeconds();
    timer.Start();

    // Apply data transformations (mirror, scale, crop...)
    int offset = this->prefetch_data_.offset(item_id);
    this->transformed_data_.set_cpu_data(top_data + offset);
    if (datum.encoded()) {
      this->data_transformer_->Transform(cv_img, &(this->transformed_data_));
    } else {
      this->data_transformer_->Transform(datum, &(this->transformed_data_));
    }
    if (this->output_labels_) {
      for (int label_i = 0; label_i < datum.label_size(); ++label_i){
        top_label[item_id * datum.label_size() + label_i] = datum.label(label_i);
      }
      //top_label[item_id] = datum.label();
    }
    trans_time += timer.MicroSeconds();
    // go to the next iter
    cursor_->Next();
    if (!cursor_->valid()) {
      DLOG(INFO) << "Restarting data prefetching from start.";
      cursor_->SeekToFirst();
    }
  }
  batch_timer.Stop();
  DLOG(INFO) << "Prefetch batch: " << batch_timer.MilliSeconds() << " ms.";
  DLOG(INFO) << "     Read time: " << read_time / 1000 << " ms.";
  DLOG(INFO) << "Transform time: " << trans_time / 1000 << " ms.";
}
开发者ID:twinsyssy1018,项目名称:caffe_multi-label,代码行数:78,代码来源:data_layer.cpp

示例8: LOG

void MyImageDataLayer<Dtype>::fetchData() {
	Datum datum;
	CHECK(prefetch_data_.count());
	Dtype* top_data = prefetch_data_.mutable_cpu_data();
	Dtype* top_label = prefetch_label_.mutable_cpu_data();
	ImageDataParameter image_data_param = this->layer_param_.image_data_param();
	const Dtype scale = image_data_param.scale();//image_data_layer相关参数
	const int batch_size = 1;//image_data_param.batch_size(); 这里我们只需要一张图片

	const int crop_size = image_data_param.crop_size();
	const bool mirror = image_data_param.mirror();
	const int new_height = image_data_param.new_height();
	const int new_width = image_data_param.new_width();

	if (mirror && crop_size == 0) {
	    LOG(FATAL) << "Current implementation requires mirror and crop_size to be "
				   << "set at the same time.";
	}
	// datum scales
	const int channels = datum_channels_;
	const int height = datum_height_;
	const int width = datum_width_;
	const int size = datum_size_;
	const int lines_size = lines_.size();
	const Dtype* mean = data_mean_.cpu_data();

	for (int item_id = 0; item_id < batch_size; ++item_id) {//读取一图片
	    // get a blob
	    CHECK_GT(lines_size, lines_id_);
	    if (!ReadImageToDatum(lines_[lines_id_].first,
							  lines_[lines_id_].second,
							  new_height, new_width, &datum)) {
			continue;
	    }
	    const string& data = datum.data();
	    if (crop_size) {
			CHECK(data.size()) << "Image cropping only support uint8 data";
			int h_off, w_off;
			// We only do random crop when we do training.
	        h_off = (height - crop_size) / 2;
	        w_off = (width - crop_size) / 2;

	        // Normal copy 正常读取,把裁剪后的图片数据读给top_data
	        for (int c = 0; c < channels; ++c) {
				for (int h = 0; h < crop_size; ++h) {
					for (int w = 0; w < crop_size; ++w) {
						int top_index = ((item_id * channels + c) * crop_size + h)
										* crop_size + w;
						int data_index = (c * height + h + h_off) * width + w + w_off;
						Dtype datum_element =
							static_cast<Dtype>(static_cast<uint8_t>(data[data_index]));
						top_data[top_index] = (datum_element - mean[data_index]) * scale;
					}
				}
	        }

	    } else {
			// Just copy the whole data 正常读取,把图片数据读给top_data
			if (data.size()) {
				for (int j = 0; j < size; ++j) {
					Dtype datum_element =
						static_cast<Dtype>(static_cast<uint8_t>(data[j]));
					top_data[item_id * size + j] = (datum_element - mean[j]) * scale;
				}
			} else {
				for (int j = 0; j < size; ++j) {
					top_data[item_id * size + j] =
						(datum.float_data(j) - mean[j]) * scale;
				}
			}
	    }
	    top_label[item_id] = datum.label();//读取该图片的标签

	}
}
开发者ID:jinmeng,项目名称:Face-Detection,代码行数:75,代码来源:my_image_data_layer.cpp

示例9: CHECK

void DataLayer<Dtype>::InternalThreadEntry() {
  Datum datum;
  CHECK(this->prefetch_data_.count());
  Dtype* top_data = this->prefetch_data_.mutable_cpu_data();
  Dtype* top_label = NULL;  // suppress warnings about uninitialized variables
  if (this->output_labels_) {
    top_label = this->prefetch_label_.mutable_cpu_data();
  }
  const int batch_size = this->layer_param_.data_param().batch_size();

  for (int item_id = 0; item_id < batch_size; ++item_id) {
    // get a blob
    switch (this->layer_param_.data_param().backend()) {
    case DataParameter_DB_LEVELDB:
      CHECK(iter_);
      CHECK(iter_->Valid());
      datum.ParseFromString(iter_->value().ToString());
      break;
    case DataParameter_DB_LMDB:
      CHECK_EQ(mdb_cursor_get(mdb_cursor_, &mdb_key_,
              &mdb_value_, MDB_GET_CURRENT), MDB_SUCCESS);
      datum.ParseFromArray(mdb_value_.mv_data,
          mdb_value_.mv_size);
      break;
    default:
      LOG(FATAL) << "Unknown database backend";
    }

    // Apply data transformations (mirror, scale, crop...)
    this->data_transformer_.Transform(item_id, datum, this->mean_, top_data);

    if (this->output_labels_) {
	  // liu
      // top_label[item_id] = datum.label();
	  // LOG(ERROR) << "label size " << datum.label_size() << " " << datum.label(0) \
				 << " " << datum.label(1) << " " << datum.label(2) << " " << datum.label(3);
	  for(int label_i=0; label_i < datum.label_size(); label_i++){
		top_label[item_id * datum.label_size() + label_i] = datum.label(label_i);
	  }
    }

    // go to the next iter
    switch (this->layer_param_.data_param().backend()) {
    case DataParameter_DB_LEVELDB:
      iter_->Next();
      if (!iter_->Valid()) {
        // We have reached the end. Restart from the first.
        DLOG(INFO) << "Restarting data prefetching from start.";
        iter_->SeekToFirst();
      }
      break;
    case DataParameter_DB_LMDB:
      if (mdb_cursor_get(mdb_cursor_, &mdb_key_,
              &mdb_value_, MDB_NEXT) != MDB_SUCCESS) {
        // We have reached the end. Restart from the first.
        DLOG(INFO) << "Restarting data prefetching from start.";
        CHECK_EQ(mdb_cursor_get(mdb_cursor_, &mdb_key_,
                &mdb_value_, MDB_FIRST), MDB_SUCCESS);
      }
      break;
    default:
      LOG(FATAL) << "Unknown database backend";
    }
  }
}
开发者ID:flair2005,项目名称:caffe_extractface,代码行数:65,代码来源:data_layer.cpp

示例10: ImageDataLayerPrefetch

void* ImageDataLayerPrefetch(void* layer_pointer) {
  CHECK(layer_pointer);
  ImageDataLayer<Dtype>* layer =
      reinterpret_cast<ImageDataLayer<Dtype>*>(layer_pointer);
  CHECK(layer);
  Datum datum;
  CHECK(layer->prefetch_data_);
  Dtype* top_data = layer->prefetch_data_->mutable_cpu_data();
  Dtype* top_label = layer->prefetch_label_->mutable_cpu_data();
  ImageDataParameter image_data_param = layer->layer_param_.image_data_param();
  const Dtype scale = image_data_param.scale();
  const int batch_size = image_data_param.batch_size();
  const int crop_size = image_data_param.crop_size();
  const bool mirror = image_data_param.mirror();
  const int new_height = image_data_param.new_height();
  const int new_width = image_data_param.new_width();

  if (mirror && crop_size == 0) {
    LOG(FATAL) << "Current implementation requires mirror and crop_size to be "
        << "set at the same time.";
  }
  // datum scales
  const int channels = layer->datum_channels_;
  const int height = layer->datum_height_;
  const int width = layer->datum_width_;
  const int size = layer->datum_size_;
  const int lines_size = layer->shuffle_index_.size();
  const Dtype* mean = layer->data_mean_.cpu_data();
  for (int item_id = 0; item_id < batch_size; ++item_id) {
    // get a blob
    CHECK_GT(lines_size, layer->lines_id_);
    int id = layer->shuffle_index_[layer->lines_id_];
    if (!ReadImageToDatum(layer->fn_list_[id],
          layer->label_list_[id],
          new_height, new_width, &datum)) {
      continue;
    }
    const string& data = datum.data();
    if (crop_size) {
      CHECK(data.size()) << "Image cropping only support uint8 data";
      int h_off, w_off;
      // We only do random crop when we do training.
      if (layer->phase_ == Caffe::TRAIN) {
        h_off = layer->PrefetchRand() % (height - crop_size);
        w_off = layer->PrefetchRand() % (width - crop_size);
      } else {
        h_off = (height - crop_size) / 2;
        w_off = (width - crop_size) / 2;
      }
      if (mirror && layer->PrefetchRand() % 2) {
        // Copy mirrored version
        for (int c = 0; c < channels; ++c) {
          for (int h = 0; h < crop_size; ++h) {
            for (int w = 0; w < crop_size; ++w) {
              int top_index = ((item_id * channels + c) * crop_size + h)
                              * crop_size + (crop_size - 1 - w);
              int data_index = (c * height + h + h_off) * width + w + w_off;
              Dtype datum_element =
                  static_cast<Dtype>(static_cast<uint8_t>(data[data_index]));
              top_data[top_index] = (datum_element - mean[data_index]) * scale;
            }
          }
        }
      } else {
        // Normal copy
        for (int c = 0; c < channels; ++c) {
          for (int h = 0; h < crop_size; ++h) {
            for (int w = 0; w < crop_size; ++w) {
              int top_index = ((item_id * channels + c) * crop_size + h)
                              * crop_size + w;
              int data_index = (c * height + h + h_off) * width + w + w_off;
              Dtype datum_element =
                  static_cast<Dtype>(static_cast<uint8_t>(data[data_index]));
              top_data[top_index] = (datum_element - mean[data_index]) * scale;
            }
          }
        }
      }
    } else {
      // Just copy the whole data
      if (data.size()) {
        for (int j = 0; j < size; ++j) {
          Dtype datum_element =
              static_cast<Dtype>(static_cast<uint8_t>(data[j]));
          top_data[item_id * size + j] = (datum_element - mean[j]) * scale;
        }
      } else {
        for (int j = 0; j < size; ++j) {
          top_data[item_id * size + j] =
              (datum.float_data(j) - mean[j]) * scale;
        }
      }
    }

    top_label[item_id] = datum.label();
    // go to the next iter
    layer->lines_id_++;
    if (layer->lines_id_ >= lines_size) {
      // We have reached the end. Restart from the first.
      DLOG(INFO) << "Restarting data prefetching from start.";
//.........这里部分代码省略.........
开发者ID:ZhaofanQiu,项目名称:caffe-windows-3dConvNet,代码行数:101,代码来源:image_data_layer.cpp

示例11: DataLayerPrefetch

void* DataLayerPrefetch(void* layer_pointer) {
  CHECK(layer_pointer);
  DataLayer<Dtype>* layer = reinterpret_cast<DataLayer<Dtype>*>(layer_pointer);
  CHECK(layer);
  Datum datum;
  CHECK(layer->prefetch_data_);
  Dtype* top_data = layer->prefetch_data_->mutable_cpu_data();
  Dtype* top_label = layer->prefetch_label_->mutable_cpu_data();
  const Dtype scale = layer->layer_param_.scale();
  const int batchsize = layer->layer_param_.batchsize();
  const int cropsize = layer->layer_param_.cropsize();
  const bool mirror = layer->layer_param_.mirror();

  if (mirror && cropsize == 0) {
    LOG(FATAL) << "Current implementation requires mirror and cropsize to be "
        << "set at the same time.";
  }
  // datum scales
  const int channels = layer->datum_channels_;
  const int height = layer->datum_height_;
  const int width = layer->datum_width_;
  const int size = layer->datum_size_;
  const Dtype* mean = layer->data_mean_.cpu_data();
  for (int itemid = 0; itemid < batchsize; ++itemid) {
    // get a blob
    CHECK(layer->iter_);
    CHECK(layer->iter_->Valid());
    datum.ParseFromString(layer->iter_->value().ToString());
    const string& data = datum.data();

    if (cropsize) {
      //CHECK(data.size()) << "Image cropping only support uint8 data";
      int h_off, w_off;
      // We only do random crop when we do training.
      if (Caffe::phase() == Caffe::TRAIN) {
        // NOLINT_NEXT_LINE(runtime/threadsafe_fn)
        h_off = rand() % (height - cropsize);
        // NOLINT_NEXT_LINE(runtime/threadsafe_fn)
        w_off = rand() % (width - cropsize);
      } else {
        h_off = (height - cropsize) / 2;
        w_off = (width - cropsize) / 2;
      }
      // NOLINT_NEXT_LINE(runtime/threadsafe_fn)
      if (mirror && rand() % 2) {
        // Copy mirrored version
        for (int c = 0; c < channels; ++c) {
          for (int h = 0; h < cropsize; ++h) {
            for (int w = 0; w < cropsize; ++w) {
              top_data[((itemid * channels + c) * cropsize + h) * cropsize
                       + cropsize - 1 - w] =
                  (static_cast<Dtype>(
                      (float)datum.float_data((c * height + h + h_off) * width
                                    + w + w_off))
                    - mean[(c * height + h + h_off) * width + w + w_off])
                  * scale;
            }
          }
        }
      } else {
        // Normal copy
        for (int c = 0; c < channels; ++c) {
          for (int h = 0; h < cropsize; ++h) {
            for (int w = 0; w < cropsize; ++w) {
              top_data[((itemid * channels + c) * cropsize + h) * cropsize + w]
                  = (static_cast<Dtype>(
                      (float)datum.float_data((c * height + h + h_off) * width
                                    + w + w_off))
                     - mean[(c * height + h + h_off) * width + w + w_off])
                  * scale;
            }
          }
        }
      }
    } else {
      // we will prefer to use data() first, and then try float_data()
      if (data.size()) {

	//cout << "unint8 data!!!!" << endl;
        for (int j = 0; j < size; ++j) {
	  //cout << "datum.int_data " << j << "of size: " << size << static_cast<Dtype>((uint8_t)data[j]) << " mean: " << mean[j] << endl;
          top_data[itemid * size + j] =
              (static_cast<Dtype>((uint8_t)data[j]) - mean[j]) * scale;
        }
      } else {
        //cout << "float data !!!!!!!!!!!" << endl;
        for (int j = 0; j < size; ++j) {
	  
	  //cout << "item: " << itemid <<" datum.float_data " << j << "of size: " << size << endl;
	  //cout << datum.float_data(j) << " mean: " << mean[j] << endl;
          top_data[itemid * size + j] =
              (datum.float_data(j) - mean[j]) * scale;
        }
      }
    }

    top_label[itemid] = datum.label();
    // go to the next iter
    layer->iter_->Next();
    if (!layer->iter_->Valid()) {
//.........这里部分代码省略.........
开发者ID:ChenglongChen,项目名称:DSN,代码行数:101,代码来源:data_layer.cpp

示例12: DataLayerPrefetch

void* DataLayerPrefetch(void* layer_pointer) {
  CHECK(layer_pointer);
  DataLayer<Dtype>* layer = static_cast<DataLayer<Dtype>*>(layer_pointer);
  CHECK(layer);
  Datum datum;
  CHECK(layer->prefetch_data_);
  Dtype* top_data = layer->prefetch_data_->mutable_cpu_data();
  Dtype* top_label;
  if (layer->output_labels_) {
    top_label = layer->prefetch_label_->mutable_cpu_data();
  }
  const Dtype scale = layer->layer_param_.data_param().scale();
  const int batch_size = layer->layer_param_.data_param().batch_size();
  const int crop_size = layer->layer_param_.data_param().crop_size();
  const bool mirror = layer->layer_param_.data_param().mirror();

  if (mirror && crop_size == 0) {
    LOG(FATAL) << "Current implementation requires mirror and crop_size to be "
        << "set at the same time.";
  }
  // datum scales
  const int channels = layer->datum_channels_;
  const int height = layer->datum_height_;
  const int width = layer->datum_width_;
  const int size = layer->datum_size_;
  const Dtype* mean = layer->data_mean_.cpu_data();
  for (int item_id = 0; item_id < batch_size; ++item_id) {
    // get a blob
    CHECK(layer->iter_);
    CHECK(layer->iter_->Valid());
    datum.ParseFromString(layer->iter_->value().ToString());
    const string& data = datum.data();
    if (crop_size) {
      CHECK(data.size()) << "Image cropping only support uint8 data";
      int h_off, w_off;
      // We only do random crop when we do training.
      if (layer->phase_ == Caffe::TRAIN) {
        h_off = layer->PrefetchRand() % (height - crop_size);
        w_off = layer->PrefetchRand() % (width - crop_size);
      } else {
        h_off = (height - crop_size) / 2;
        w_off = (width - crop_size) / 2;
      }
      if (mirror && layer->PrefetchRand() % 2) {
        // Copy mirrored version
        for (int c = 0; c < channels; ++c) {
          for (int h = 0; h < crop_size; ++h) {
            for (int w = 0; w < crop_size; ++w) {
              int top_index = ((item_id * channels + c) * crop_size + h)
                              * crop_size + (crop_size - 1 - w);
              int data_index = (c * height + h + h_off) * width + w + w_off;
              Dtype datum_element =
                  static_cast<Dtype>(static_cast<uint8_t>(data[data_index]));
              top_data[top_index] = (datum_element - mean[data_index]) * scale;
            }
          }
        }
      } else {
        // Normal copy
        for (int c = 0; c < channels; ++c) {
          for (int h = 0; h < crop_size; ++h) {
            for (int w = 0; w < crop_size; ++w) {
              int top_index = ((item_id * channels + c) * crop_size + h)
                              * crop_size + w;
              int data_index = (c * height + h + h_off) * width + w + w_off;
              Dtype datum_element =
                  static_cast<Dtype>(static_cast<uint8_t>(data[data_index]));
              top_data[top_index] = (datum_element - mean[data_index]) * scale;
            }
          }
        }
      }
    } else {
      // we will prefer to use data() first, and then try float_data()
      if (data.size()) {
        for (int j = 0; j < size; ++j) {
          Dtype datum_element =
              static_cast<Dtype>(static_cast<uint8_t>(data[j]));
          top_data[item_id * size + j] = (datum_element - mean[j]) * scale;
        }
      } else {
        for (int j = 0; j < size; ++j) {
          top_data[item_id * size + j] =
              (datum.float_data(j) - mean[j]) * scale;
        }
      }
    }

    if (layer->output_labels_) {
      top_label[item_id] = datum.label();
    }
    // go to the next iter
    layer->iter_->Next();
    if (!layer->iter_->Valid()) {
      // We have reached the end. Restart from the first.
      DLOG(INFO) << "Restarting data prefetching from start.";
      layer->iter_->SeekToFirst();
    }
  }

//.........这里部分代码省略.........
开发者ID:ALISCIFP,项目名称:C3D,代码行数:101,代码来源:data_layer.cpp

示例13: CHECK

void DataLayer<Dtype>::load_batch(Batch<Dtype>* batch) {
  CPUTimer batch_timer;
  batch_timer.Start();
  double read_time = 0;
  double trans_time = 0;
  CPUTimer timer;
  // LOG(INFO)<<"load_batch";
  CHECK(batch->data_.count());
  CHECK(this->transformed_data_.count());

  // Reshape according to the first datum of each batch
  // on single input batches allows for inputs of varying dimension.
  const int batch_size = this->layer_param_.data_param().batch_size();
  // Datum& datum = *(reader_.full().peek());
  // // Use data_transformer to infer the expected blob shape from datum.
  Datum datum;
  datum.ParseFromString(cursor_->value());
  // Use data_transformer to infer the expected blob shape from datum.
  vector<int> top_shape = this->data_transformer_->InferBlobShape(datum);
  this->transformed_data_.Reshape(top_shape);
  // Reshape batch according to the batch_size.
  top_shape[0] = batch_size;
  batch->data_.Reshape(top_shape);
  Dtype* top_data = batch->data_.mutable_cpu_data();
  // Dtype* top_data = this->prefetch_data_.mutable_cpu_data();
  Dtype* top_label = NULL;  // suppress warnings about uninitialized variables
  // LOG(INFO)<<" output_labels_:"<<this->output_labels_;
  if (this->output_labels_) {
    top_label = batch->label_.mutable_cpu_data();
    // top_label = this->prefetch_label_.mutable_cpu_data();
  }
  Dtype* use_data=this->use_data_.mutable_cpu_data();
  // LOG(INFO)<<" use_data[0]:"<<use_data[0];
  if (use_data[0]==0.0){
    // LOG(INFO)<<"visit in order";
    for (int item_id = 0; item_id < batch_size; item_id++) {
      Datum datum;
      datum.ParseFromString(cursor_->value());
   
      // Apply data transformations (mirror, scale, crop...)
      // LOG(INFO)<<"jq enter data_layers"<< item_id;
      int offset = batch->data_.offset(item_id);
      // LOG(INFO)<<"jq enter data_layers";
      this->transformed_data_.set_cpu_data(top_data + offset);
      this->data_transformer_->Transform(datum, &(this->transformed_data_));
      // Copy label.
      if (this->output_labels_) {
        top_label[item_id] = datum.label();
        // std::cout<<" cursor_:"<<datum.label();
      }
      // use_data[item_id +5] = start;
      // trans_time += timer.MicroSeconds();
      cursor_->Next();
      // start +=1.0;
      // std::cout<<" output_labels_:"<<this->output_labels_;
      if (!cursor_->valid()) {
        DLOG(INFO) << "Restarting data prefetching from start.";
        cursor_->SeekToFirst();
      }
      // reader_.free().push(const_cast<Datum*>(&datum));
    }
  }else if (use_data[0]!=0.0){
    // forward-backward using semi supervised with false label
    // 0, sami-super-unsuper, 1, label_kinds, 2, step over, 
    // 3, datanum, 4, start index
    // LOG(INFO)<<"visit in Key/value";
    // LOG(INFO)<<"this->PREFETCH_COUNT:"<<this->PREFETCH_COUNT;
    int step_over = batch_size+1;
    // std::cout<<std::endl;
    scoped_ptr<db::Transaction> txn(db_->NewTransaction());
    // std::cout<<"key:";
    int kCIFARImageNBytes=3072;
    for (int item_id = 0; item_id < batch_size; item_id++) {
      char str_buffer[kCIFARImageNBytes];
      int id= static_cast<int>(use_data[item_id+ 1]);
      // std::cout<<" "<<id<<":";
      int length = snprintf(str_buffer, kCIFARImageNBytes, "%05d", id);
      string value;
      string str=string(str_buffer, length);
      txn->Get(str, value);
      Datum datum;
      datum.ParseFromString(value);
      int offset = batch->data_.offset(item_id);
      // LOG(INFO)<<"jq enter data_layers";
      this->transformed_data_.set_cpu_data(top_data + offset);
      this->data_transformer_->Transform(datum, &(this->transformed_data_));
      // std::cout<<" output_labels_:"<<this->output_labels_;
      if (this->output_labels_) {
        // top_label[item_id] = datum.label();
        top_label[item_id] = use_data[item_id+ step_over];
        // std::cout<<" KV:"<<datum.label();
        // top_label[item_id]= static_cast<int>(use_data[item_id + batch_size +3]);
      }
      if( use_data[item_id+ step_over]!=(datum.label()%1000))
        LOG(INFO)<<"image id:"<<id<<" not correctly fetch: "<<datum.label()
      <<" vs "<<use_data[item_id+ step_over];
      // std::cout<<top_label[item_id];
      // std::cout<<" key:"<<id;
    }
    // std::cout<<std::endl;
//.........这里部分代码省略.........
开发者ID:zjnqh,项目名称:caffe,代码行数:101,代码来源:data_layer.cpp

示例14: PoseImageDataLayerPrefetch

void* PoseImageDataLayerPrefetch(void* layer_pointer)
{
	CHECK(layer_pointer);
	PoseImageDataLayer<Dtype>* layer =
			reinterpret_cast<PoseImageDataLayer<Dtype>*>(layer_pointer);
	CHECK(layer);
	Datum datum;
	CHECK(layer->prefetch_data_);
	Dtype* top_data = layer->prefetch_data_->mutable_cpu_data();
	Dtype* top_label = layer->prefetch_label_->mutable_cpu_data();
	PoseImageDataParameter pose_image_data_param = layer->layer_param_.pose_image_data_param();
	const Dtype scale = pose_image_data_param.scale();
	const int batch_size = pose_image_data_param.batch_size();
	const int crop_size = pose_image_data_param.crop_size();
	const bool mirror = pose_image_data_param.mirror();
	const int new_height = pose_image_data_param.new_height();
	const int new_width = pose_image_data_param.new_width();
	const int out_height = pose_image_data_param.out_height();
	const int out_width  = pose_image_data_param.out_width();
	const int key_point_range = pose_image_data_param.key_point_range();
	const float scale_lower_bound = pose_image_data_param.scale_lower_bound();
	const float scale_upper_bound = pose_image_data_param.scale_upper_bound();
	const int key_point_num  = pose_image_data_param.key_point_num();
	const int randmargin  = pose_image_data_param.randmargin();
	const int use_mode = pose_image_data_param.use_mode();

	const float torso_ratio = pose_image_data_param.torso_ratio();
	const int mx1 = pose_image_data_param.mx1();
	const int mx2 = pose_image_data_param.mx2();
	const int my1 = pose_image_data_param.my1();
	const int my2 = pose_image_data_param.my2();

	const bool color_aug = pose_image_data_param.color_aug();


	if (mirror && crop_size == 0)
	{
		LOG(FATAL)
				<< "Current implementation requires mirror and crop_size to be "
				<< "set at the same time.";
	}
	// datum scales
	const int channels = layer->datum_channels_;
	const int height = layer->datum_height_;
	const int width = layer->datum_width_;
	const int size = layer->datum_size_;
	const int lines_size = layer->lines_.size();
	const Dtype* mean = layer->data_mean_.cpu_data();

	int * was = new int[out_height * out_width];

	for (int item_id = 0; item_id < batch_size; ++item_id)
	{
		char ss1[1010],ss2[1010];
		sprintf(ss1,"/home/dragon123/cnncode/showimg/%d.jpg",item_id);
		//sprintf(ss2,"/home/dragon123/cnncode/showimg/%d_gt.jpg",item_id);
		// get a blob
		float nowscale = 1;
		if (layer->phase_ == Caffe::TRAIN)
			nowscale = random(scale_lower_bound, scale_upper_bound);
		CHECK_GT(1.55, nowscale);
		CHECK_GT(nowscale, 0.95);

		CHECK_GT(lines_size, layer->lines_id_);
		if (use_mode == 1)
		{

			bool temp = PoseReadImageToDatum_mode1(layer->lines_[layer->lines_id_].first,
					layer->lines_[layer->lines_id_].second, new_height, new_width, &datum, nowscale,
					torso_ratio, mx1, mx2, my1, my2, randmargin);
			if (temp == false) continue;
		}
		else
		{
			bool temp = PoseReadImageToDatum_mode2(layer->lines_[layer->lines_id_].first,
								layer->lines_[layer->lines_id_].second, new_height, new_width, &datum, nowscale,
								torso_ratio, mx1, mx2, my1, my2, randmargin);
			if (temp == false) continue;
		}


		const string& data = datum.data();

		if (new_height > 0 && new_width > 0)
		{
			CHECK(data.size()) << "Image cropping only support uint8 data";
			int h_off, w_off;
			// We only do random crop when we do training.
			h_off = 0;
			w_off = 0;

			if (mirror && layer->PrefetchRand() % 2)
			{
				// Copy mirrored version
				for (int c = 0; c < channels; ++c)
				{
					float thisRand = 1;
					if(color_aug)
					{
						thisRand = random(0.8,1.2);
//.........这里部分代码省略.........
开发者ID:caomw,项目名称:caffe-3dnormal_joint_pose,代码行数:101,代码来源:pose_image_data_layer.cpp

示例15: DataLayerPrefetch

	void* DataLayerPrefetch(void* layer_pointer) {
		CHECK(layer_pointer);
		DataLayer<Dtype>* layer = static_cast<DataLayer<Dtype>*>(layer_pointer);
		CHECK(layer);
		Datum datum;
		CHECK(layer->prefetch_data_);
		Dtype* top_data = layer->prefetch_data_->mutable_cpu_data(); //数据
		Dtype* top_label;                                            //标签
		if (layer->output_labels_) {
			top_label = layer->prefetch_label_->mutable_cpu_data();
		}
		const Dtype scale = layer->layer_param_.data_param().scale();
		const int batch_size = layer->layer_param_.data_param().batch_size();
		const int crop_size = layer->layer_param_.data_param().crop_size();
		const bool mirror = layer->layer_param_.data_param().mirror();

		if (mirror && crop_size == 0) {//当前实现需要同时设置mirror和cropsize
			LOG(FATAL) << "Current implementation requires mirror and crop_size to be "
				<< "set at the same time.";
		}
		// datum scales
		const int channels = layer->datum_channels_;
		const int height = layer->datum_height_;
		const int width = layer->datum_width_;
		const int size = layer->datum_size_;
		const Dtype* mean = layer->data_mean_.cpu_data();
		
		for (int item_id = 0; item_id < batch_size; ++item_id) {
			//每一批数据的数量是batchsize,一个循环拉取一张

			// get a blob
			CHECK(layer->iter_);
			CHECK(layer->iter_->Valid());
			datum.ParseFromString(layer->iter_->value().ToString());//利用迭代器拉取下一批数据
			const string& data = datum.data();

			int label_blob_channels = layer->prefetch_label_->channels();
			int label_data_dim = datum.label_size();
			CHECK_EQ(layer->prefetch_label_->channels(), datum.label_size()) << "label size is NOT the same.";
			
			if (crop_size) {//如果需要裁剪  
				CHECK(data.size()) << "Image cropping only support uint8 data";
				int h_off, w_off;
				// We only do random crop when we do training.
				//只是在训练阶段做随机裁剪 
				if (layer->phase_ == Caffe::TRAIN) {
					h_off = layer->PrefetchRand() % (height - crop_size);
					w_off = layer->PrefetchRand() % (width - crop_size);
				} else {//测试阶段固定裁剪
					h_off = (height - crop_size) / 2;
					w_off = (width - crop_size) / 2;
				}
				//怎么感觉下面两种情况的代码是一样的? 
				if (mirror && layer->PrefetchRand() % 2) {
					// Copy mirrored version
					for (int c = 0; c < channels; ++c) {
						for (int h = 0; h < crop_size; ++h) {
							for (int w = 0; w < crop_size; ++w) {
								int top_index = ((item_id * channels + c) * crop_size + h)
									* crop_size + (crop_size - 1 - w);
								int data_index = (c * height + h + h_off) * width + w + w_off;
								Dtype datum_element =
									static_cast<Dtype>(static_cast<uint8_t>(data[data_index]));
								top_data[top_index] = (datum_element - mean[data_index]) * scale;
							}
						}
					}
				} else {//如果不需要裁剪  
					// Normal copy
					//我们优先考虑data(),然后float_data() 
					for (int c = 0; c < channels; ++c) {
						for (int h = 0; h < crop_size; ++h) {
							for (int w = 0; w < crop_size; ++w) {
								int top_index = ((item_id * channels + c) * crop_size + h)
									* crop_size + w;
								int data_index = (c * height + h + h_off) * width + w + w_off;
								Dtype datum_element =
									static_cast<Dtype>(static_cast<uint8_t>(data[data_index]));
								top_data[top_index] = (datum_element - mean[data_index]) * scale;
							}
						}
					}
				}
			} else {
				// we will prefer to use data() first, and then try float_data()
				if (data.size()) {
					for (int j = 0; j < size; ++j) {
						Dtype datum_element =
							static_cast<Dtype>(static_cast<uint8_t>(data[j]));
						top_data[item_id * size + j] = (datum_element - mean[j]) * scale;
					}
				} else {
					for (int j = 0; j < size; ++j) {
						top_data[item_id * size + j] =
							(datum.float_data(j) - mean[j]) * scale;
					}
				}
			}

		
//.........这里部分代码省略.........
开发者ID:clarencezhang,项目名称:caffe-windows-multilabels,代码行数:101,代码来源:data_layer.cpp


注:本文中的Datum::label方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。