当前位置: 首页>>代码示例>>C++>>正文


C++ DataPoints::getDescriptorViewByName方法代码示例

本文整理汇总了C++中DataPoints::getDescriptorViewByName方法的典型用法代码示例。如果您正苦于以下问题:C++ DataPoints::getDescriptorViewByName方法的具体用法?C++ DataPoints::getDescriptorViewByName怎么用?C++ DataPoints::getDescriptorViewByName使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在DataPoints的用法示例。


在下文中一共展示了DataPoints::getDescriptorViewByName方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: InvalidField

void DataPointsFiltersImpl<T>::OrientNormalsDataPointsFilter::inPlaceFilter(
	DataPoints& cloud)
{
	if (!cloud.descriptorExists("normals"))
		throw InvalidField("OrientNormalsDataPointsFilter: Error, cannot find normals in descriptors.");
	if (!cloud.descriptorExists("observationDirections"))
		throw InvalidField("OrientNormalsDataPointsFilter: Error, cannot find observation directions in descriptors.");

	BOOST_AUTO(normals, cloud.getDescriptorViewByName("normals"));
	const BOOST_AUTO(observationDirections, cloud.getDescriptorViewByName("observationDirections"));
	assert(normals.rows() == observationDirections.rows());
	for (int i = 0; i < cloud.features.cols(); i++)
	{
		// Check normal orientation
		const Vector vecP = observationDirections.col(i);
		const Vector vecN = normals.col(i);
		const double scalar = vecP.dot(vecN);

		// Swap normal
		if(towardCenter)
		{
			if (scalar < 0)
				normals.col(i) = -vecN;
		}
		else
		{
			if (scalar > 0)
				normals.col(i) = -vecN;
		}
	}

}
开发者ID:RIVeR-Lab,项目名称:ihmc-open-robotics-software,代码行数:32,代码来源:DataPointsFiltersImpl.cpp

示例2: dim

void ObservationDirectionDataPointsFilter<T>::inPlaceFilter(DataPoints& cloud)
{
	const int dim(cloud.features.rows() - 1);
	const int featDim(cloud.features.cols());
	if (dim != 2 && dim != 3)
	{
		throw InvalidField(
			(boost::format("ObservationDirectionDataPointsFilter: Error, works only in 2 or 3 dimensions, cloud has %1% dimensions.") % dim).str()
		);
	}

	Vector center(dim);
	center[0] = centerX;
	center[1] = centerY;
	if (dim == 3)
		center[2] = centerZ;

	cloud.allocateDescriptor("observationDirections", dim);
	BOOST_AUTO(observationDirections, cloud.getDescriptorViewByName("observationDirections"));

	for (int i = 0; i < featDim; ++i)
	{
		// Check normal orientation
		const Vector p(cloud.features.block(0, i, dim, 1));
		observationDirections.col(i) = center - p;
	}

}
开发者ID:ethz-asl,项目名称:libpointmatcher,代码行数:28,代码来源:ObservationDirection.cpp

示例3: BOOST_AUTO

void InspectorsImpl<T>::AbstractVTKInspector::buildGenericAttributeStream(std::ostream& stream, const std::string& attribute, const std::string& nameTag, const DataPoints& cloud, const int forcedDim)
{
	if (!cloud.descriptorExists(nameTag))
		return;
		
	const BOOST_AUTO(desc, cloud.getDescriptorViewByName(nameTag));
	assert(desc.rows() <= forcedDim);

	if(desc.rows() != 0)
	{
		if(attribute.compare("COLOR_SCALARS") == 0)
		{
			stream << attribute << " " << nameTag << " " << forcedDim << "\n";
			stream << padWithOnes(desc, forcedDim, desc.cols()).transpose();
		}
		else
		{
			stream << attribute << " " << nameTag << " float\n";
			if(attribute.compare("SCALARS") == 0)
				stream << "LOOKUP_TABLE default\n";

			stream << padWithZeros(desc, forcedDim, desc.cols()).transpose();
		}
		stream << "\n";
	}
}
开发者ID:Jinqiang,项目名称:libpointmatcher,代码行数:26,代码来源:InspectorsImpl.cpp

示例4: squaredValues

void SimpleSensorNoiseDataPointsFilter<T>::inPlaceFilter(DataPoints& cloud)
{
	cloud.allocateDescriptor("simpleSensorNoise", 1);
	BOOST_AUTO(noise, cloud.getDescriptorViewByName("simpleSensorNoise"));

	switch(sensorType)
	{
	case 0: // Sick LMS-1xx
	{
		noise = computeLaserNoise(0.012, 0.0068, 0.0008, cloud.features);
		break;
	}
	case 1: // Hokuyo URG-04LX
	{
		noise = computeLaserNoise(0.028, 0.0013, 0.0001, cloud.features);
		break;
	}
	case 2: // Hokuyo UTM-30LX
	{
		noise = computeLaserNoise(0.018, 0.0006, 0.0015, cloud.features);
		break;
	}
	case 3: // Kinect / Xtion
	{
		const int dim = cloud.features.rows();
		const Matrix squaredValues(cloud.features.topRows(dim-1).colwise().norm().array().square());
		noise = squaredValues*(0.5*0.00285);
		break;
	}
  case 4: // Sick Tim3xx
  {
    noise = computeLaserNoise(0.004, 0.0053, -0.0092, cloud.features);
    break;
  }
	default:
		throw InvalidParameter(
			(boost::format("SimpleSensorNoiseDataPointsFilter: Error, cannot compute noise for sensorType id %1% .") % sensorType).str());
	}

}
开发者ID:samuelba,项目名称:libpointmatcher,代码行数:40,代码来源:SimpleSensorNoise.cpp

示例5: covariance

typename ErrorMinimizersImpl<T>::Matrix
ErrorMinimizersImpl<T>::PointToPlaneWithCovErrorMinimizer::estimateCovariance(const DataPoints& reading, const DataPoints& reference, const Matches& matches, const OutlierWeights& outlierWeights, const TransformationParameters& transformation)
{
	int max_nbr_point = outlierWeights.cols();

	Matrix covariance(Matrix::Zero(6,6));
	Matrix J_hessian(Matrix::Zero(6,6));
	Matrix d2J_dReadingdX(Matrix::Zero(6, max_nbr_point));
	Matrix d2J_dReferencedX(Matrix::Zero(6, max_nbr_point));

	Vector reading_point(Vector::Zero(3));
	Vector reference_point(Vector::Zero(3));
	Vector normal(3);
	Vector reading_direction(Vector::Zero(3));
	Vector reference_direction(Vector::Zero(3));

	Matrix normals = reference.getDescriptorViewByName("normals");

	if (normals.rows() < 3)    // Make sure there are normals in DataPoints
		return std::numeric_limits<T>::max() * Matrix::Identity(6,6);

	T beta = -asin(transformation(2,0));
	T alpha = atan2(transformation(2,1), transformation(2,2));
	T gamma = atan2(transformation(1,0)/cos(beta), transformation(0,0)/cos(beta));
	T t_x = transformation(0,3);
	T t_y = transformation(1,3);
	T t_z = transformation(2,3);

	Vector tmp_vector_6(Vector::Zero(6));

	int valid_points_count = 0;

	for(int i = 0; i < max_nbr_point; ++i)
	{
		if (outlierWeights(0,i) > 0.0)
		{
			reading_point = reading.features.block(0,i,3,1);
			int reference_idx = matches.ids(0,i);
			reference_point = reference.features.block(0,reference_idx,3,1);

			normal = normals.block(0,reference_idx,3,1);

			T reading_range = reading_point.norm();
			reading_direction = reading_point / reading_range;
			T reference_range = reference_point.norm();
			reference_direction = reference_point / reference_range;

			T n_alpha = normal(2)*reading_direction(1) - normal(1)*reading_direction(2);
			T n_beta = normal(0)*reading_direction(2) - normal(2)*reading_direction(0);
			T n_gamma = normal(1)*reading_direction(0) - normal(0)*reading_direction(1);

			T E = normal(0)*(reading_point(0) - gamma*reading_point(1) + beta*reading_point(2) + t_x - reference_point(0));
			E +=  normal(1)*(gamma*reading_point(0) + reading_point(1) - alpha*reading_point(2) + t_y - reference_point(1));
			E +=  normal(2)*(-beta*reading_point(0) + alpha*reading_point(1) + reading_point(2) + t_z - reference_point(2));

			T N_reading = normal(0)*(reading_direction(0) - gamma*reading_direction(1) + beta*reading_direction(2));
			N_reading +=  normal(1)*(gamma*reading_direction(0) + reading_direction(1) - alpha*reading_direction(2));
			N_reading +=  normal(2)*(-beta*reading_direction(0) + alpha*reading_direction(1) + reading_direction(2));

			T N_reference = -(normal(0)*reference_direction(0) + normal(1)*reference_direction(1) + normal(2)*reference_direction(2));

			// update the hessian and d2J/dzdx
			tmp_vector_6 << normal(0), normal(1), normal(2), reading_range * n_alpha, reading_range * n_beta, reading_range * n_gamma;

			J_hessian += tmp_vector_6 * tmp_vector_6.transpose();

			tmp_vector_6 << normal(0) * N_reading, normal(1) * N_reading, normal(2) * N_reading, n_alpha * (E + reading_range * N_reading), n_beta * (E + reading_range * N_reading), n_gamma * (E + reading_range * N_reading);

			d2J_dReadingdX.block(0,valid_points_count,6,1) = tmp_vector_6;

			tmp_vector_6 << normal(0) * N_reference, normal(1) * N_reference, normal(2) * N_reference, reference_range * n_alpha * N_reference, reference_range * n_beta * N_reference, reference_range * n_gamma * N_reference;

			d2J_dReferencedX.block(0,valid_points_count,6,1) = tmp_vector_6;

			valid_points_count++;
		} // if (outlierWeights(0,i) > 0.0)
	}

	Matrix d2J_dZdX(Matrix::Zero(6, 2 * valid_points_count));
	d2J_dZdX.block(0,0,6,valid_points_count) = d2J_dReadingdX.block(0,0,6,valid_points_count);
	d2J_dZdX.block(0,valid_points_count,6,valid_points_count) = d2J_dReferencedX.block(0,0,6,valid_points_count);

	Matrix inv_J_hessian = J_hessian.inverse();

	covariance = d2J_dZdX * d2J_dZdX.transpose();
	covariance = inv_J_hessian * covariance * inv_J_hessian;

	return (sensorStdDev * sensorStdDev) * covariance;
}
开发者ID:SimFaris,项目名称:libpointmatcher,代码行数:89,代码来源:ErrorMinimizersImpl.cpp

示例6: InvalidField

void CovarianceSamplingDataPointsFilter<T>::inPlaceFilter(DataPoints& cloud)
{	
	const std::size_t featDim(cloud.features.rows());
	assert(featDim == 4); //3D pts only
	
	//Check number of points
	const std::size_t nbPoints = cloud.getNbPoints();		
	if(nbSample >= nbPoints)
		return;
	
	//Check if there is normals info
	if (!cloud.descriptorExists("normals"))
		throw InvalidField("OrientNormalsDataPointsFilter: Error, cannot find normals in descriptors.");

	const auto& normals = cloud.getDescriptorViewByName("normals");
	
	std::vector<std::size_t> keepIndexes;
	keepIndexes.resize(nbSample);
	
	///---- Part A, as we compare the cloud with himself, the overlap is 100%, so we keep all points 
	//A.1 and A.2 - Compute candidates
	std::vector<std::size_t> candidates ;
	candidates.resize(nbPoints);
	
	for (std::size_t i = 0; i < nbPoints; ++i) candidates[i] = i;
	
	const std::size_t nbCandidates = candidates.size();
	
	//Compute centroid
	Vector3 center;
	for(std::size_t i = 0; i < featDim - 1; ++i) center(i) = T(0.);
	
	for (std::size_t i = 0; i < nbCandidates; ++i)
		for (std::size_t f = 0; f <= 3; ++f)
			center(f) += cloud.features(f,candidates[i]);
	
	for(std::size_t i = 0; i <= 3; ++i) center(i) /= T(nbCandidates);
	
	//Compute torque normalization
	T Lnorm = 1.0;
	
	if(normalizationMethod == TorqueNormMethod::L1)
	{
		Lnorm = 1.0;
	}
	else if(normalizationMethod == TorqueNormMethod::Lavg)
	{
		Lnorm = 0.0;
		for (std::size_t i = 0; i < nbCandidates; ++i)
			Lnorm += (cloud.features.col(candidates[i]).head(3) - center).norm();
		Lnorm /= nbCandidates;
	}
	else if(normalizationMethod == TorqueNormMethod::Lmax)	
	{	
		const Vector minValues = cloud.features.rowwise().minCoeff();
		const Vector maxValues = cloud.features.rowwise().maxCoeff();
		const Vector3 radii = maxValues.head(3) - minValues.head(3);

		Lnorm = radii.maxCoeff() / 2.; //radii.mean() / 2.; 
	}
	
	//A.3 - Compute 6x6 covariance matrix + EigenVectors
	auto computeCovariance = [Lnorm, nbCandidates, &cloud, &center, &normals, &candidates](Matrix66 & cov) -> void {
			//Compute F matrix, see Eq. (4)
			Eigen::Matrix<T, 6, Eigen::Dynamic> F(6, nbCandidates);
	
			for(std::size_t i = 0; i < nbCandidates; ++i)
			{
				const Vector3 p = cloud.features.col(candidates[i]).head(3) - center; // pi-c
				const Vector3 ni = normals.col(candidates[i]).head(3);
				
				//compute (1 / L) * (pi - c) x ni 
				F.template block<3, 1>(0, i) = (1. / Lnorm) * p.cross(ni);
				//set ni part
				F.template block<3, 1>(3, i) = ni;
			}

			// Compute the covariance matrix Cov = FF'
			cov = F * F.transpose(); 
		};
		
	Matrix66 covariance;
	computeCovariance(covariance);
	
	Eigen::EigenSolver<Matrix66> solver(covariance);		
	const Matrix66  eigenVe = solver.eigenvectors().real();
	const Vector6   eigenVa = solver.eigenvalues().real();
	
	///---- Part B
	//B.1 - Compute the v-6 for each candidate
	std::vector<Vector6, Eigen::aligned_allocator<Vector6>> v; // v[i] = [(pi-c) x ni ; ni ]'
	v.resize(nbCandidates);

	for(std::size_t i = 0; i < nbCandidates; ++i)
	{
		const Vector3 p = cloud.features.col(candidates[i]).head(3) - center; // pi-c
		const Vector3 ni = normals.col(candidates[i]).head(3);
		
		v[i].template block<3, 1>(0, 0) = (1. / Lnorm) * p.cross(ni);
		v[i].template block<3, 1>(3, 0) = ni;
//.........这里部分代码省略.........
开发者ID:samuelba,项目名称:libpointmatcher,代码行数:101,代码来源:CovarianceSampling.cpp

示例7: pointsCount

void DataPointsFiltersImpl<T>::SamplingSurfaceNormalDataPointsFilter::inPlaceFilter(
	DataPoints& cloud)
{
	typedef Matrix Features;
	typedef typename DataPoints::View View;
	typedef typename DataPoints::Label Label;
	typedef typename DataPoints::Labels Labels;

	const int pointsCount(cloud.features.cols());
	const int featDim(cloud.features.rows());
	const int descDim(cloud.descriptors.rows());

	int insertDim(0);
	if (averageExistingDescriptors)
	{
		// TODO: this should be in the form of an assert
		// Validate descriptors and labels
		for(unsigned int i = 0; i < cloud.descriptorLabels.size(); i++)
			insertDim += cloud.descriptorLabels[i].span;
		if (insertDim != descDim)
			throw InvalidField("SamplingSurfaceNormalDataPointsFilter: Error, descriptor labels do not match descriptor data");
	}

	// Compute space requirement for new descriptors
	const int dimNormals(featDim-1);
	const int dimDensities(1);
	const int dimEigValues(featDim-1);
	const int dimEigVectors((featDim-1)*(featDim-1));

	// Allocate space for new descriptors
	Labels cloudLabels;
	if (keepNormals)
		cloudLabels.push_back(Label("normals", dimNormals));
	if (keepDensities)
		cloudLabels.push_back(Label("densities", dimDensities));
	if (keepEigenValues)
		cloudLabels.push_back(Label("eigValues", dimEigValues));
	if (keepEigenVectors)
		cloudLabels.push_back(Label("eigVectors", dimEigVectors));
	cloud.allocateDescriptors(cloudLabels);

	// we keep build data on stack for reentrant behaviour
	View cloudExistingDescriptors(cloud.descriptors.block(0,0,cloud.descriptors.rows(),cloud.descriptors.cols()));
	BuildData buildData(cloud.features, cloud.descriptors);

	// get views
	if (keepNormals)
		buildData.normals = cloud.getDescriptorViewByName("normals");
	if (keepDensities)
		buildData.densities = cloud.getDescriptorViewByName("densities");
	if (keepEigenValues)
		buildData.eigenValues = cloud.getDescriptorViewByName("eigValues");
	if (keepEigenVectors)
		buildData.eigenVectors = cloud.getDescriptorViewByName("eigVectors");
	// build the new point cloud
	buildNew(
		buildData,
		0,
		pointsCount,
		cloud.features.rowwise().minCoeff(),
		cloud.features.rowwise().maxCoeff()
	);

	// Bring the data we keep to the front of the arrays then
	// wipe the leftover unused space.
	std::sort(buildData.indicesToKeep.begin(), buildData.indicesToKeep.end());
	int ptsOut = buildData.indicesToKeep.size();
	for (int i = 0; i < ptsOut; i++){
		int k = buildData.indicesToKeep[i];
		assert(i <= k);
		cloud.features.col(i) = cloud.features.col(k);
		if (cloud.descriptors.rows() != 0)
			cloud.descriptors.col(i) = cloud.descriptors.col(k);
		if(keepNormals)
			buildData.normals->col(i) = buildData.normals->col(k);
		if(keepDensities)
			(*buildData.densities)(0,i) = (*buildData.densities)(0,k);
		if(keepEigenValues)
			buildData.eigenValues->col(i) = buildData.eigenValues->col(k);
		if(keepEigenVectors)
			buildData.eigenVectors->col(i) = buildData.eigenVectors->col(k);
	}
	cloud.features.conservativeResize(Eigen::NoChange, ptsOut);
	cloud.descriptors.conservativeResize(Eigen::NoChange, ptsOut);

	// warning if some points were dropped
	if(buildData.unfitPointsCount != 0)
		LOG_INFO_STREAM("  SamplingSurfaceNormalDataPointsFilter - Could not compute normal for " << buildData.unfitPointsCount << " pts.");
}
开发者ID:RIVeR-Lab,项目名称:ihmc-open-robotics-software,代码行数:89,代码来源:DataPointsFiltersImpl.cpp


注:本文中的DataPoints::getDescriptorViewByName方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。