本文整理汇总了C++中DataPoints::descriptorExists方法的典型用法代码示例。如果您正苦于以下问题:C++ DataPoints::descriptorExists方法的具体用法?C++ DataPoints::descriptorExists怎么用?C++ DataPoints::descriptorExists使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类DataPoints
的用法示例。
在下文中一共展示了DataPoints::descriptorExists方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: InvalidField
void DataPointsFiltersImpl<T>::OrientNormalsDataPointsFilter::inPlaceFilter(
DataPoints& cloud)
{
if (!cloud.descriptorExists("normals"))
throw InvalidField("OrientNormalsDataPointsFilter: Error, cannot find normals in descriptors.");
if (!cloud.descriptorExists("observationDirections"))
throw InvalidField("OrientNormalsDataPointsFilter: Error, cannot find observation directions in descriptors.");
BOOST_AUTO(normals, cloud.getDescriptorViewByName("normals"));
const BOOST_AUTO(observationDirections, cloud.getDescriptorViewByName("observationDirections"));
assert(normals.rows() == observationDirections.rows());
for (int i = 0; i < cloud.features.cols(); i++)
{
// Check normal orientation
const Vector vecP = observationDirections.col(i);
const Vector vecN = normals.col(i);
const double scalar = vecP.dot(vecN);
// Swap normal
if(towardCenter)
{
if (scalar < 0)
normals.col(i) = -vecN;
}
else
{
if (scalar > 0)
normals.col(i) = -vecN;
}
}
}
示例2: BOOST_AUTO
void InspectorsImpl<T>::AbstractVTKInspector::buildGenericAttributeStream(std::ostream& stream, const std::string& attribute, const std::string& nameTag, const DataPoints& cloud, const int forcedDim)
{
if (!cloud.descriptorExists(nameTag))
return;
const BOOST_AUTO(desc, cloud.getDescriptorViewByName(nameTag));
assert(desc.rows() <= forcedDim);
if(desc.rows() != 0)
{
if(attribute.compare("COLOR_SCALARS") == 0)
{
stream << attribute << " " << nameTag << " " << forcedDim << "\n";
stream << padWithOnes(desc, forcedDim, desc.cols()).transpose();
}
else
{
stream << attribute << " " << nameTag << " float\n";
if(attribute.compare("SCALARS") == 0)
stream << "LOOKUP_TABLE default\n";
stream << padWithZeros(desc, forcedDim, desc.cols()).transpose();
}
stream << "\n";
}
}
示例3: InvalidField
void CovarianceSamplingDataPointsFilter<T>::inPlaceFilter(DataPoints& cloud)
{
const std::size_t featDim(cloud.features.rows());
assert(featDim == 4); //3D pts only
//Check number of points
const std::size_t nbPoints = cloud.getNbPoints();
if(nbSample >= nbPoints)
return;
//Check if there is normals info
if (!cloud.descriptorExists("normals"))
throw InvalidField("OrientNormalsDataPointsFilter: Error, cannot find normals in descriptors.");
const auto& normals = cloud.getDescriptorViewByName("normals");
std::vector<std::size_t> keepIndexes;
keepIndexes.resize(nbSample);
///---- Part A, as we compare the cloud with himself, the overlap is 100%, so we keep all points
//A.1 and A.2 - Compute candidates
std::vector<std::size_t> candidates ;
candidates.resize(nbPoints);
for (std::size_t i = 0; i < nbPoints; ++i) candidates[i] = i;
const std::size_t nbCandidates = candidates.size();
//Compute centroid
Vector3 center;
for(std::size_t i = 0; i < featDim - 1; ++i) center(i) = T(0.);
for (std::size_t i = 0; i < nbCandidates; ++i)
for (std::size_t f = 0; f <= 3; ++f)
center(f) += cloud.features(f,candidates[i]);
for(std::size_t i = 0; i <= 3; ++i) center(i) /= T(nbCandidates);
//Compute torque normalization
T Lnorm = 1.0;
if(normalizationMethod == TorqueNormMethod::L1)
{
Lnorm = 1.0;
}
else if(normalizationMethod == TorqueNormMethod::Lavg)
{
Lnorm = 0.0;
for (std::size_t i = 0; i < nbCandidates; ++i)
Lnorm += (cloud.features.col(candidates[i]).head(3) - center).norm();
Lnorm /= nbCandidates;
}
else if(normalizationMethod == TorqueNormMethod::Lmax)
{
const Vector minValues = cloud.features.rowwise().minCoeff();
const Vector maxValues = cloud.features.rowwise().maxCoeff();
const Vector3 radii = maxValues.head(3) - minValues.head(3);
Lnorm = radii.maxCoeff() / 2.; //radii.mean() / 2.;
}
//A.3 - Compute 6x6 covariance matrix + EigenVectors
auto computeCovariance = [Lnorm, nbCandidates, &cloud, ¢er, &normals, &candidates](Matrix66 & cov) -> void {
//Compute F matrix, see Eq. (4)
Eigen::Matrix<T, 6, Eigen::Dynamic> F(6, nbCandidates);
for(std::size_t i = 0; i < nbCandidates; ++i)
{
const Vector3 p = cloud.features.col(candidates[i]).head(3) - center; // pi-c
const Vector3 ni = normals.col(candidates[i]).head(3);
//compute (1 / L) * (pi - c) x ni
F.template block<3, 1>(0, i) = (1. / Lnorm) * p.cross(ni);
//set ni part
F.template block<3, 1>(3, i) = ni;
}
// Compute the covariance matrix Cov = FF'
cov = F * F.transpose();
};
Matrix66 covariance;
computeCovariance(covariance);
Eigen::EigenSolver<Matrix66> solver(covariance);
const Matrix66 eigenVe = solver.eigenvectors().real();
const Vector6 eigenVa = solver.eigenvalues().real();
///---- Part B
//B.1 - Compute the v-6 for each candidate
std::vector<Vector6, Eigen::aligned_allocator<Vector6>> v; // v[i] = [(pi-c) x ni ; ni ]'
v.resize(nbCandidates);
for(std::size_t i = 0; i < nbCandidates; ++i)
{
const Vector3 p = cloud.features.col(candidates[i]).head(3) - center; // pi-c
const Vector3 ni = normals.col(candidates[i]).head(3);
v[i].template block<3, 1>(0, 0) = (1. / Lnorm) * p.cross(ni);
v[i].template block<3, 1>(3, 0) = ni;
//.........这里部分代码省略.........