本文整理汇总了C++中ConstantRange::getSignedMin方法的典型用法代码示例。如果您正苦于以下问题:C++ ConstantRange::getSignedMin方法的具体用法?C++ ConstantRange::getSignedMin怎么用?C++ ConstantRange::getSignedMin使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ConstantRange
的用法示例。
在下文中一共展示了ConstantRange::getSignedMin方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: makeICmpRegion
ConstantRange ConstantRange::makeICmpRegion(unsigned Pred,
const ConstantRange &CR) {
uint32_t W = CR.getBitWidth();
switch (Pred) {
default: assert(!"Invalid ICmp predicate to makeICmpRegion()");
case ICmpInst::ICMP_EQ:
return CR;
case ICmpInst::ICMP_NE:
if (CR.isSingleElement())
return ConstantRange(CR.getUpper(), CR.getLower());
return ConstantRange(W);
case ICmpInst::ICMP_ULT:
return ConstantRange(APInt::getMinValue(W), CR.getUnsignedMax());
case ICmpInst::ICMP_SLT:
return ConstantRange(APInt::getSignedMinValue(W), CR.getSignedMax());
case ICmpInst::ICMP_ULE: {
APInt UMax(CR.getUnsignedMax());
if (UMax.isMaxValue())
return ConstantRange(W);
return ConstantRange(APInt::getMinValue(W), UMax + 1);
}
case ICmpInst::ICMP_SLE: {
APInt SMax(CR.getSignedMax());
if (SMax.isMaxSignedValue() || (SMax+1).isMaxSignedValue())
return ConstantRange(W);
return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
}
case ICmpInst::ICMP_UGT:
return ConstantRange(CR.getUnsignedMin() + 1, APInt::getNullValue(W));
case ICmpInst::ICMP_SGT:
return ConstantRange(CR.getSignedMin() + 1,
APInt::getSignedMinValue(W));
case ICmpInst::ICMP_UGE: {
APInt UMin(CR.getUnsignedMin());
if (UMin.isMinValue())
return ConstantRange(W);
return ConstantRange(UMin, APInt::getNullValue(W));
}
case ICmpInst::ICMP_SGE: {
APInt SMin(CR.getSignedMin());
if (SMin.isMinSignedValue())
return ConstantRange(W);
return ConstantRange(SMin, APInt::getSignedMinValue(W));
}
}
}
示例2: ConstantRange
ConstantRange
ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
const ConstantRange &Other,
unsigned NoWrapKind) {
typedef OverflowingBinaryOperator OBO;
// Computes the intersection of CR0 and CR1. It is different from
// intersectWith in that the ConstantRange returned will only contain elements
// in both CR0 and CR1 (i.e. SubsetIntersect(X, Y) is a *subset*, proper or
// not, of both X and Y).
auto SubsetIntersect =
[](const ConstantRange &CR0, const ConstantRange &CR1) {
return CR0.inverse().unionWith(CR1.inverse()).inverse();
};
assert(BinOp >= Instruction::BinaryOpsBegin &&
BinOp < Instruction::BinaryOpsEnd && "Binary operators only!");
assert((NoWrapKind == OBO::NoSignedWrap ||
NoWrapKind == OBO::NoUnsignedWrap ||
NoWrapKind == (OBO::NoUnsignedWrap | OBO::NoSignedWrap)) &&
"NoWrapKind invalid!");
unsigned BitWidth = Other.getBitWidth();
if (BinOp != Instruction::Add)
// Conservative answer: empty set
return ConstantRange(BitWidth, false);
if (auto *C = Other.getSingleElement())
if (C->isMinValue())
// Full set: nothing signed / unsigned wraps when added to 0.
return ConstantRange(BitWidth);
ConstantRange Result(BitWidth);
if (NoWrapKind & OBO::NoUnsignedWrap)
Result =
SubsetIntersect(Result, ConstantRange(APInt::getNullValue(BitWidth),
-Other.getUnsignedMax()));
if (NoWrapKind & OBO::NoSignedWrap) {
APInt SignedMin = Other.getSignedMin();
APInt SignedMax = Other.getSignedMax();
if (SignedMax.isStrictlyPositive())
Result = SubsetIntersect(
Result,
ConstantRange(APInt::getSignedMinValue(BitWidth),
APInt::getSignedMinValue(BitWidth) - SignedMax));
if (SignedMin.isNegative())
Result = SubsetIntersect(
Result, ConstantRange(APInt::getSignedMinValue(BitWidth) - SignedMin,
APInt::getSignedMinValue(BitWidth)));
}
return Result;
}
示例3: ConstantRange
ConstantRange
ConstantRange::multiply(const ConstantRange &Other) const {
// TODO: If either operand is a single element and the multiply is known to
// be non-wrapping, round the result min and max value to the appropriate
// multiple of that element. If wrapping is possible, at least adjust the
// range according to the greatest power-of-two factor of the single element.
if (isEmptySet() || Other.isEmptySet())
return ConstantRange(getBitWidth(), /*isFullSet=*/false);
// Multiplication is signedness-independent. However different ranges can be
// obtained depending on how the input ranges are treated. These different
// ranges are all conservatively correct, but one might be better than the
// other. We calculate two ranges; one treating the inputs as unsigned
// and the other signed, then return the smallest of these ranges.
// Unsigned range first.
APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
ConstantRange Result_zext = ConstantRange(this_min * Other_min,
this_max * Other_max + 1);
ConstantRange UR = Result_zext.truncate(getBitWidth());
// If the unsigned range doesn't wrap, and isn't negative then it's a range
// from one positive number to another which is as good as we can generate.
// In this case, skip the extra work of generating signed ranges which aren't
// going to be better than this range.
if (!UR.isWrappedSet() &&
(UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
return UR;
// Now the signed range. Because we could be dealing with negative numbers
// here, the lower bound is the smallest of the cartesian product of the
// lower and upper ranges; for example:
// [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
// Similarly for the upper bound, swapping min for max.
this_min = getSignedMin().sext(getBitWidth() * 2);
this_max = getSignedMax().sext(getBitWidth() * 2);
Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
auto L = {this_min * Other_min, this_min * Other_max,
this_max * Other_min, this_max * Other_max};
auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
ConstantRange SR = Result_sext.truncate(getBitWidth());
return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
}
示例4: makeAllowedICmpRegion
ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
const ConstantRange &CR) {
if (CR.isEmptySet())
return CR;
uint32_t W = CR.getBitWidth();
switch (Pred) {
default:
llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
case CmpInst::ICMP_EQ:
return CR;
case CmpInst::ICMP_NE:
if (CR.isSingleElement())
return ConstantRange(CR.getUpper(), CR.getLower());
return ConstantRange(W);
case CmpInst::ICMP_ULT: {
APInt UMax(CR.getUnsignedMax());
if (UMax.isMinValue())
return ConstantRange(W, /* empty */ false);
return ConstantRange(APInt::getMinValue(W), UMax);
}
case CmpInst::ICMP_SLT: {
APInt SMax(CR.getSignedMax());
if (SMax.isMinSignedValue())
return ConstantRange(W, /* empty */ false);
return ConstantRange(APInt::getSignedMinValue(W), SMax);
}
case CmpInst::ICMP_ULE: {
APInt UMax(CR.getUnsignedMax());
if (UMax.isMaxValue())
return ConstantRange(W);
return ConstantRange(APInt::getMinValue(W), UMax + 1);
}
case CmpInst::ICMP_SLE: {
APInt SMax(CR.getSignedMax());
if (SMax.isMaxSignedValue())
return ConstantRange(W);
return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
}
case CmpInst::ICMP_UGT: {
APInt UMin(CR.getUnsignedMin());
if (UMin.isMaxValue())
return ConstantRange(W, /* empty */ false);
return ConstantRange(UMin + 1, APInt::getNullValue(W));
}
case CmpInst::ICMP_SGT: {
APInt SMin(CR.getSignedMin());
if (SMin.isMaxSignedValue())
return ConstantRange(W, /* empty */ false);
return ConstantRange(SMin + 1, APInt::getSignedMinValue(W));
}
case CmpInst::ICMP_UGE: {
APInt UMin(CR.getUnsignedMin());
if (UMin.isMinValue())
return ConstantRange(W);
return ConstantRange(UMin, APInt::getNullValue(W));
}
case CmpInst::ICMP_SGE: {
APInt SMin(CR.getSignedMin());
if (SMin.isMinSignedValue())
return ConstantRange(W);
return ConstantRange(SMin, APInt::getSignedMinValue(W));
}
}
}