当前位置: 首页>>代码示例>>C++>>正文


C++ CGeometry::SetPeriodicBoundary方法代码示例

本文整理汇总了C++中CGeometry::SetPeriodicBoundary方法的典型用法代码示例。如果您正苦于以下问题:C++ CGeometry::SetPeriodicBoundary方法的具体用法?C++ CGeometry::SetPeriodicBoundary怎么用?C++ CGeometry::SetPeriodicBoundary使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在CGeometry的用法示例。


在下文中一共展示了CGeometry::SetPeriodicBoundary方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: main


//.........这里部分代码省略.........
				grid_adaptation->GetAdjResidual(geometry, config);
				grid_adaptation->SetIndicator_Robust(geometry, config);
				break;
			case COMPUTABLE_ROBUST:
				grid_adaptation->GetAdjSolution(geometry, config);
				grid_adaptation->GetLinResidual(geometry, config);
				grid_adaptation->SetIndicator_Computable_Robust(geometry, config);
				break;
			default :
				cout << "The adaptation is not defined" << endl;
		}
		
		/*--- Perform an homothetic adaptation of the grid ---*/
		CPhysicalGeometry *geo_adapt; geo_adapt = new CPhysicalGeometry;
		
		cout << "Homothetic grid adaptation" << endl;
		if (geometry->GetnDim() == 2) grid_adaptation->SetHomothetic_Adaptation2D(geometry, geo_adapt, config);
		if (geometry->GetnDim() == 3) grid_adaptation->SetHomothetic_Adaptation3D(geometry, geo_adapt, config);
    
		/*--- Smooth the numerical grid coordinates ---*/
		if (config->GetSmoothNumGrid()) {
			cout << "Preprocessing for doing the implicit smoothing." << endl;
			geo_adapt->SetPoint_Connectivity(); geo_adapt->SetElement_Connectivity();
			geo_adapt->SetBoundVolume(); geo_adapt->Check_Orientation(config);
			geo_adapt->SetEdges(); geo_adapt->SetVertex(config);
			cout << "Implicit smoothing of the numerical grid coordinates." << endl;
			geo_adapt->SetCoord_Smoothing(5, 1.5, config);
		}
		
		/*--- Original and adapted grid ---*/
    strcpy (file_name, "original_grid.plt");
    geometry->SetTecPlot(file_name);
    
		/*--- Write the adaptation sensor ---*/
		grid_adaptation->WriteAdaptSensor(geometry, file_name);
		
    strcpy (file_name, "adapted_grid.plt");
    geo_adapt->SetTecPlot(file_name, true);
    strcpy (file_name, "adapted_surface.plt");
    geo_adapt->SetBoundTecPlot(file_name, true, config);
		
		/*--- Write the new adapted grid, including the modified boundaries surfaces ---*/
		geo_adapt->SetMeshFile(config, config->GetMesh_Out_FileName());
    
    
		/*--- Write the restart file ---*/
		if ((config->GetKind_Adaptation() != SMOOTHING) && (config->GetKind_Adaptation() != FULL) &&
				(config->GetKind_Adaptation() != WAKE) && (config->GetKind_Adaptation() != TWOPHASE) &&
				(config->GetKind_Adaptation() != SUPERSONIC_SHOCK))
			grid_adaptation->SetRestart_FlowSolution(config, geo_adapt, config->GetRestart_FlowFileName());
		
		if ((config->GetKind_Adaptation() == GRAD_FLOW_ADJ) || (config->GetKind_Adaptation() == GRAD_ADJOINT)
				|| (config->GetKind_Adaptation() == FULL_ADJOINT) || (config->GetKind_Adaptation() == ROBUST)
				|| (config->GetKind_Adaptation() == COMPUTABLE) || (config->GetKind_Adaptation() == COMPUTABLE_ROBUST) ||
				(config->GetKind_Adaptation() == REMAINING))
			grid_adaptation->SetRestart_AdjSolution(config, geo_adapt, config->GetRestart_AdjFileName());
		
		if ((config->GetKind_Adaptation() == FULL_LINEAR) || (config->GetKind_Adaptation() == COMPUTABLE_ROBUST)) {
			grid_adaptation->SetRestart_LinSolution(config, geo_adapt, config->GetRestart_LinFileName());
		}
	}
	else {
    
    if (config->GetKind_Adaptation() == PERIODIC) {
      
      cout << endl <<"-------------------- Setting the periodic boundaries --------------------" << endl;
      
      /*--- Set periodic boundary conditions ---*/
      geometry->SetPeriodicBoundary(config);
      
      /*--- Original grid for debugging purposes ---*/
      strcpy (file_name, "periodic_original.plt"); geometry->SetTecPlot(file_name);
      
      /*--- Create a new grid with the right periodic boundary ---*/
      CGeometry *periodic; periodic = new CPeriodicGeometry(geometry, config);
      periodic->SetPeriodicBoundary(geometry, config);
      periodic->SetMeshFile(geometry, config, config->GetMesh_Out_FileName());
      
      /*--- Output of the grid for debuging purposes ---*/
      strcpy (file_name, "periodic_halo.plt"); periodic->SetTecPlot(file_name);
      
    }
    
    if (config->GetKind_Adaptation() == NONE) {
      strcpy (file_name, "original_grid.plt");
      geometry->SetTecPlot(file_name);
      geometry->SetMeshFile (config, config->GetMesh_Out_FileName());
    }
    
	}
  
#ifdef HAVE_MPI
	MPI_Finalize();
#endif
	
	/*--- End solver ---*/
	cout << endl <<"------------------------- Exit Success (SU2_MSH) ------------------------" << endl << endl;
  
	return EXIT_SUCCESS;
}
开发者ID:anuragpallaprolu,项目名称:SU2,代码行数:101,代码来源:SU2_MSH.cpp

示例2: main

int main(int argc, char *argv[]) {
	
	char buffer_vtk[100], buffer_plt[100]; 
	string MeshFile;
	unsigned short nZone = 1;
    
#ifndef NO_MPI
#ifdef WINDOWS
	MPI_Init(&argc,&argv);
#else
    MPI::Init(argc, argv);
#endif
#endif
  
	/*--- Definition of the class for the definition of the problem ---*/
	CConfig *config;
	if (argc == 2) config = new CConfig(argv[1], SU2_PBC, ZONE_0, nZone, 0, VERB_HIGH);
	else {
		char grid_file[200];
		strcpy (grid_file, "default.cfg");
		config = new CConfig(grid_file, SU2_PBC, ZONE_0, nZone, 0, VERB_HIGH);
	}

	/*--- Definition of the class for the geometry ---*/
	CGeometry *geometry; geometry = new CGeometry;
	geometry = new CPhysicalGeometry(config, ZONE_0, nZone);
  
  /*--- Perform the non-dimensionalization, in case any values are needed ---*/
  config->SetNondimensionalization(geometry->GetnDim(), ZONE_0);
  
	cout << endl <<"----------------------- Preprocessing computations ----------------------" << endl;
	
	/*--- Compute elements surrounding points, points surrounding points, and elements surrounding elements ---*/
	cout << "Setting local point and element connectivity." <<endl; 
	geometry->SetEsuP(); geometry->SetPsuP(); geometry->SetEsuE();
	
	/*--- Check the orientation before computing geometrical quantities ---*/
	cout << "Checking the numerical grid orientation." <<endl;
	geometry->SetBoundVolume(); geometry->Check_Orientation(config);
	
	/*--- Create the edge structure ---*/
	cout << "Identifying edges and vertices." <<endl; 
	geometry->SetEdges(); geometry->SetVertex(config); 
	
	/*--- Compute center of gravity ---*/
	cout << "Computing centers of gravity." << endl;
	geometry->SetCG();
  
	/*--- Create the control volume structures ---*/
	cout << "Setting the control volume structure." << endl; 
	geometry->SetControlVolume(config, ALLOCATE);
	geometry->SetBoundControlVolume(config, ALLOCATE);
	
	cout << endl <<"-------------------- Setting the periodic boundaries --------------------" << endl;

	/*--- Set periodic boundary conditions ---*/
	geometry->SetPeriodicBoundary(config);
	
  /*--- Original grid for debugging purposes ---*/
  strcpy (buffer_plt, "periodic_original.plt"); geometry->SetTecPlot(buffer_plt);
 
	/*--- Create a new grid with the right periodic boundary ---*/
	CGeometry *periodic; periodic = new CPeriodicGeometry(geometry, config);
	periodic->SetPeriodicBoundary(geometry, config);
	periodic->SetMeshFile(geometry, config, config->GetMesh_Out_FileName());
	
	/*--- Output of the grid for debuging purposes ---*/
  strcpy (buffer_plt, "periodic_halo.plt"); periodic->SetTecPlot(buffer_plt);
	
#ifndef NO_MPI
#ifdef WINDOWS
	MPI_Finalize();
#else
	MPI::Finalize();
#endif
#endif
    
	/*--- End solver ---*/
	cout << endl <<"------------------------- Exit Success (SU2_PBC) ------------------------" << endl << endl;
	
	return EXIT_SUCCESS;
}
开发者ID:ZJLi2013,项目名称:SU2,代码行数:82,代码来源:SU2_PBC.cpp

示例3: main


//.........这里部分代码省略.........
		/*--- Write the adapted grid sensor ---*/
    
    strcpy (file_name, "adapted_grid.dat");
    geo_adapt->SetTecPlot(file_name, true);
    strcpy (file_name, "adapted_surface.dat");
    geo_adapt->SetBoundTecPlot(file_name, true, config_container[ZONE_0]);
		
		/*--- Write the new adapted grid, including the modified boundaries surfaces ---*/
    
		geo_adapt->SetMeshFile(config_container[ZONE_0], config_container[ZONE_0]->GetMesh_Out_FileName());
    
    
		/*--- Write the restart file ---*/
    
		if ((config_container[ZONE_0]->GetKind_Adaptation() != SMOOTHING) && (config_container[ZONE_0]->GetKind_Adaptation() != FULL) &&
				(config_container[ZONE_0]->GetKind_Adaptation() != WAKE) &&
				(config_container[ZONE_0]->GetKind_Adaptation() != SUPERSONIC_SHOCK))
			grid_adaptation->SetRestart_FlowSolution(config_container[ZONE_0], geo_adapt, config_container[ZONE_0]->GetRestart_FlowFileName());
		
		if ((config_container[ZONE_0]->GetKind_Adaptation() == GRAD_FLOW_ADJ) || (config_container[ZONE_0]->GetKind_Adaptation() == GRAD_ADJOINT)
				|| (config_container[ZONE_0]->GetKind_Adaptation() == FULL_ADJOINT) || (config_container[ZONE_0]->GetKind_Adaptation() == COMPUTABLE) ||
				(config_container[ZONE_0]->GetKind_Adaptation() == REMAINING))
			grid_adaptation->SetRestart_AdjSolution(config_container[ZONE_0], geo_adapt, config_container[ZONE_0]->GetRestart_AdjFileName());
		
	}
	else {
    
    if (config_container[ZONE_0]->GetKind_Adaptation() == PERIODIC) {
      
      cout << endl <<"-------------------- Setting the periodic boundaries --------------------" << endl;
      
      /*--- Set periodic boundary conditions ---*/
      
      geometry_container[ZONE_0]->SetPeriodicBoundary(config_container[ZONE_0]);
      
      /*--- Original grid for debugging purposes ---*/
      
      strcpy (file_name, "periodic_original.dat"); geometry_container[ZONE_0]->SetTecPlot(file_name, true);
      
      /*--- Create a new grid with the right periodic boundary ---*/
      
      CGeometry *periodic; periodic = new CPeriodicGeometry(geometry_container[ZONE_0], config_container[ZONE_0]);
      periodic->SetPeriodicBoundary(geometry_container[ZONE_0], config_container[ZONE_0]);
      periodic->SetMeshFile(geometry_container[ZONE_0], config_container[ZONE_0], config_container[ZONE_0]->GetMesh_Out_FileName());
      
      /*--- Output of the grid for debuging purposes ---*/
      
      strcpy (file_name, "periodic_halo.dat"); periodic->SetTecPlot(file_name, true);
      
    }
    
    if (config_container[ZONE_0]->GetKind_Adaptation() == NONE) {
      strcpy (file_name, "original_grid.dat");
      geometry_container[ZONE_0]->SetTecPlot(file_name, true);
      geometry_container[ZONE_0]->SetMeshFile(config_container[ZONE_0], config_container[ZONE_0]->GetMesh_Out_FileName());
    }
    
	}
  
  if (rank == MASTER_NODE)
    cout << endl <<"------------------------- Solver Postprocessing -------------------------" << endl;
  
  if (geometry_container != NULL) {
    for (iZone = 0; iZone < nZone; iZone++) {
      if (geometry_container[iZone] != NULL) {
        delete geometry_container[iZone];
开发者ID:drewkett,项目名称:SU2,代码行数:67,代码来源:SU2_MSH.cpp


注:本文中的CGeometry::SetPeriodicBoundary方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。