本文整理汇总了C++中CGeometry::SetElement_Connectivity方法的典型用法代码示例。如果您正苦于以下问题:C++ CGeometry::SetElement_Connectivity方法的具体用法?C++ CGeometry::SetElement_Connectivity怎么用?C++ CGeometry::SetElement_Connectivity使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类CGeometry
的用法示例。
在下文中一共展示了CGeometry::SetElement_Connectivity方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
int main(int argc, char *argv[]) {
/*--- Variable definitions ---*/
char file_name[MAX_STRING_SIZE];
unsigned short nZone = 1;
#ifdef HAVE_MPI
MPI_Init(&argc,&argv);
#endif
/*--- Definition of the config problem ---*/
CConfig *config;
if (argc == 2) config = new CConfig(argv[1], SU2_MSH, ZONE_0, nZone, 0, VERB_HIGH);
else { strcpy (file_name, "default.cfg"); config = new CConfig(file_name, SU2_MSH, ZONE_0, nZone, 0, VERB_HIGH); }
/*--- Definition of the Class for the geometry ---*/
CGeometry *geometry; geometry = new CGeometry;
geometry = new CPhysicalGeometry(config, ZONE_0, nZone);
/*--- Perform the non-dimensionalization, in case any values are needed ---*/
config->SetNondimensionalization(geometry->GetnDim(), ZONE_0);
cout << endl <<"----------------------- Preprocessing computations ----------------------" << endl;
/*--- Compute elements surrounding points, points surrounding points, and elements surronding elements ---*/
cout << "Setting local point and element connectivity." <<endl;
geometry->SetPoint_Connectivity(); geometry->SetElement_Connectivity();
/*--- Check the orientation before computing geometrical quantities ---*/
cout << "Check numerical grid orientation." <<endl;
geometry->SetBoundVolume(); geometry->Check_Orientation(config);
/*--- Create the edge structure ---*/
cout << "Identify faces, edges and vertices." <<endl;
geometry->SetFaces(); geometry->SetEdges(); geometry->SetVertex(config); geometry->SetCG();
/*--- Create the control volume structures ---*/
cout << "Set control volume structure." << endl;
geometry->SetControlVolume(config, ALLOCATE); geometry->SetBoundControlVolume(config, ALLOCATE);
if ((config->GetKind_Adaptation() != NONE) && (config->GetKind_Adaptation() != PERIODIC)) {
cout << endl <<"--------------------- Start numerical grid adaptation -------------------" << endl;
/*-- Definition of the Class for grid adaptation ---*/
CGridAdaptation *grid_adaptation;
grid_adaptation = new CGridAdaptation(geometry, config);
/*--- Read the flow solution and/or the adjoint solution
and choose the elements to adapt ---*/
if ((config->GetKind_Adaptation() != FULL)
&& (config->GetKind_Adaptation() != WAKE) && (config->GetKind_Adaptation() != TWOPHASE)
&& (config->GetKind_Adaptation() != SMOOTHING) && (config->GetKind_Adaptation() != SUPERSONIC_SHOCK))
grid_adaptation->GetFlowSolution(geometry, config);
switch (config->GetKind_Adaptation()) {
case NONE:
break;
case SMOOTHING:
config->SetSmoothNumGrid(true);
grid_adaptation->SetNo_Refinement(geometry, 1);
break;
case FULL:
grid_adaptation->SetComplete_Refinement(geometry, 1);
break;
case WAKE:
grid_adaptation->SetWake_Refinement(geometry, 1);
break;
case TWOPHASE:
grid_adaptation->SetTwoPhase_Refinement(geometry, 1);
break;
case SUPERSONIC_SHOCK:
grid_adaptation->SetSupShock_Refinement(geometry, config);
break;
case FULL_FLOW:
grid_adaptation->SetComplete_Refinement(geometry, 1);
break;
case FULL_ADJOINT:
grid_adaptation->GetAdjSolution(geometry, config);
grid_adaptation->SetComplete_Refinement(geometry, 1);
break;
case FULL_LINEAR:
grid_adaptation->GetLinSolution(geometry, config);
grid_adaptation->SetComplete_Refinement(geometry, 1);
break;
case GRAD_FLOW:
grid_adaptation->SetIndicator_Flow(geometry, config, 1);
break;
case GRAD_ADJOINT:
grid_adaptation->GetAdjSolution(geometry, config);
grid_adaptation->SetIndicator_Adj(geometry, config, 1);
break;
case GRAD_FLOW_ADJ:
grid_adaptation->GetAdjSolution(geometry, config);
grid_adaptation->SetIndicator_FlowAdj(geometry, config);
break;
case COMPUTABLE:
grid_adaptation->GetAdjSolution(geometry, config);
grid_adaptation->GetFlowResidual(geometry, config);
//.........这里部分代码省略.........