本文整理汇总了C++中BlackoilState::temperature方法的典型用法代码示例。如果您正苦于以下问题:C++ BlackoilState::temperature方法的具体用法?C++ BlackoilState::temperature怎么用?C++ BlackoilState::temperature使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类BlackoilState
的用法示例。
在下文中一共展示了BlackoilState::temperature方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: computeSaturation
/// @brief Computes saturation from surface volume
void computeSaturation(const BlackoilPropertiesInterface& props,
BlackoilState& state)
{
const int np = props.numPhases();
const int nc = props.numCells();
std::vector<double> allA(nc*np*np);
std::vector<int> allcells(nc);
for (int c = 0; c < nc; ++c) {
allcells[c] = c;
}
//std::vector<double> res_vol(np);
const std::vector<double>& z = state.surfacevol();
props.matrix(nc, &state.pressure()[0], &state.temperature()[0], &z[0], &allcells[0], &allA[0], 0);
// Linear solver.
MAT_SIZE_T n = np;
MAT_SIZE_T nrhs = 1;
MAT_SIZE_T lda = np;
std::vector<MAT_SIZE_T> piv(np);
MAT_SIZE_T ldb = np;
MAT_SIZE_T info = 0;
//double res_vol;
double tot_sat;
const double epsilon = std::sqrt(std::numeric_limits<double>::epsilon());
for (int c = 0; c < nc; ++c) {
double* A = &allA[c*np*np];
const double* z_loc = &z[c*np];
double* s = &state.saturation()[c*np];
for (int p = 0; p < np; ++p){
s[p] = z_loc[p];
}
dgesv_(&n, &nrhs, &A[0], &lda, &piv[0], &s[0], &ldb, &info);
tot_sat = 0;
for (int p = 0; p < np; ++p){
if (s[p] < epsilon) // saturation may be less then zero due to round of errors
s[p] = 0;
tot_sat += s[p];
}
for (int p = 0; p < np; ++p){
s[p] = s[p]/tot_sat;
}
}
}
示例2: computeInjectedProduced
/// @brief Computes injected and produced surface volumes of all phases.
/// Note 1: assumes that only the first phase is injected.
/// Note 2: assumes that transport has been done with an
/// implicit method, i.e. that the current state
/// gives the mobilities used for the preceding timestep.
/// Note 3: Gives surface volume values, not reservoir volumes
/// (as the incompressible version of the function does).
/// Also, assumes that transport_src is given in surface volumes
/// for injector terms!
/// @param[in] props fluid and rock properties.
/// @param[in] state state variables (pressure, sat, surfvol)
/// @param[in] transport_src if < 0: total resv outflow, if > 0: first phase surfv inflow
/// @param[in] dt timestep used
/// @param[out] injected must point to a valid array with P elements,
/// where P = s.size()/src.size().
/// @param[out] produced must also point to a valid array with P elements.
void computeInjectedProduced(const BlackoilPropertiesInterface& props,
const BlackoilState& state,
const std::vector<double>& transport_src,
const double dt,
double* injected,
double* produced)
{
const int num_cells = transport_src.size();
if (props.numCells() != num_cells) {
OPM_THROW(std::runtime_error, "Size of transport_src vector does not match number of cells in props.");
}
const int np = props.numPhases();
if (int(state.saturation().size()) != num_cells*np) {
OPM_THROW(std::runtime_error, "Sizes of state vectors do not match number of cells.");
}
const std::vector<double>& press = state.pressure();
const std::vector<double>& temp = state.temperature();
const std::vector<double>& s = state.saturation();
const std::vector<double>& z = state.surfacevol();
std::fill(injected, injected + np, 0.0);
std::fill(produced, produced + np, 0.0);
std::vector<double> visc(np);
std::vector<double> mob(np);
std::vector<double> A(np*np);
std::vector<double> prod_resv_phase(np);
std::vector<double> prod_surfvol(np);
for (int c = 0; c < num_cells; ++c) {
if (transport_src[c] > 0.0) {
// Inflowing transport source is a surface volume flux
// for the first phase.
injected[0] += transport_src[c]*dt;
} else if (transport_src[c] < 0.0) {
// Outflowing transport source is a total reservoir
// volume flux.
const double flux = -transport_src[c]*dt;
const double* sat = &s[np*c];
props.relperm(1, sat, &c, &mob[0], 0);
props.viscosity(1, &press[c], &temp[c], &z[np*c], &c, &visc[0], 0);
props.matrix(1, &press[c], &temp[c], &z[np*c], &c, &A[0], 0);
double totmob = 0.0;
for (int p = 0; p < np; ++p) {
mob[p] /= visc[p];
totmob += mob[p];
}
std::fill(prod_surfvol.begin(), prod_surfvol.end(), 0.0);
for (int p = 0; p < np; ++p) {
prod_resv_phase[p] = (mob[p]/totmob)*flux;
for (int q = 0; q < np; ++q) {
prod_surfvol[q] += prod_resv_phase[p]*A[q + np*p];
}
}
for (int p = 0; p < np; ++p) {
produced[p] += prod_surfvol[p];
}
}
}
}
示例3: averageTemperature
/**
* Compute average temperature in all regions.
*
* \param[in] state Dynamic reservoir state.
*/
void
averageTemperature(const BlackoilState& state)
{
T_avg_.setZero();
const std::vector<double>& T = state.temperature();
for (std::vector<double>::size_type
i = 0, n = T.size(); i < n; ++i)
{
T_avg_(rmap_.region(i)) += T[i];
}
T_avg_ /= ncells_;
}
示例4: computeCellDynamicData
/// Compute per-iteration dynamic properties for cells.
void CompressibleTpfaPolymer::computeCellDynamicData(const double /*dt*/,
const BlackoilState& state,
const WellState& /*well_state*/)
{
// These are the variables that get computed by this function:
//
// std::vector<double> cell_A_;
// std::vector<double> cell_dA_;
// std::vector<double> cell_viscosity_;
// std::vector<double> cell_eff_viscosity_;
// std::vector<double> cell_phasemob_;
// std::vector<double> cell_voldisc_;
// std::vector<double> porevol_; // Only modified if rock_comp_props_ is non-null.
// std::vector<double> rock_comp_; // Empty unless rock_comp_props_ is non-null.
const int nc = grid_.number_of_cells;
const int np = props_.numPhases();
const double* cell_p = &state.pressure()[0];
const double* cell_T = &state.temperature()[0];
const double* cell_z = &state.surfacevol()[0];
cell_A_.resize(nc*np*np);
cell_dA_.resize(nc*np*np);
props_.matrix(nc, cell_p, cell_T, cell_z, &allcells_[0], &cell_A_[0], &cell_dA_[0]);
cell_viscosity_.resize(nc*np);
props_.viscosity(nc, cell_p, cell_T, cell_z, &allcells_[0], &cell_viscosity_[0], 0);
cell_phasemob_.resize(nc*np);
for (int cell = 0; cell < nc; ++cell) {
poly_props_.effectiveVisc((*c_)[cell], cell_viscosity_[np*cell + 0], cell_eff_viscosity_[np*cell + 0]);
poly_props_.effectiveMobilities((*c_)[cell], (*cmax_)[cell], &cell_viscosity_[np*cell + 0], &cell_relperm_[np*cell + 0], &cell_phasemob_[np*cell + 0]);
}
// Volume discrepancy: we have that
// z = Au, voldiscr = sum(u) - 1,
// but I am not sure it is actually needed.
// Use zero for now.
// TODO: Check this!
cell_voldisc_.clear();
cell_voldisc_.resize(nc, 0.0);
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol_);
rock_comp_.resize(nc);
for (int cell = 0; cell < nc; ++cell) {
rock_comp_[cell] = rock_comp_props_->rockComp(state.pressure()[cell]);
}
}
}
示例5: computePorevolume
SimulatorReport SimulatorCompressibleTwophase::Impl::run(SimulatorTimer& timer,
BlackoilState& state,
WellState& well_state)
{
std::vector<double> transport_src;
// Initialisation.
std::vector<double> porevol;
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
} else {
computePorevolume(grid_, props_.porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
std::vector<double> initial_porevol = porevol;
// Main simulation loop.
Opm::time::StopWatch pressure_timer;
double ptime = 0.0;
Opm::time::StopWatch transport_timer;
double ttime = 0.0;
Opm::time::StopWatch step_timer;
Opm::time::StopWatch total_timer;
total_timer.start();
double init_surfvol[2] = { 0.0 };
double inplace_surfvol[2] = { 0.0 };
double tot_injected[2] = { 0.0 };
double tot_produced[2] = { 0.0 };
Opm::computeSaturatedVol(porevol, state.surfacevol(), init_surfvol);
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
Opm::WellReport wellreport;
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
if (wells_) {
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
wellreport.push(props_, *wells_,
state.pressure(), state.surfacevol(), state.saturation(),
0.0, well_state.bhp(), well_state.perfRates());
}
std::fstream tstep_os;
if (output_) {
std::string filename = output_dir_ + "/step_timing.param";
tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
}
for (; !timer.done(); ++timer) {
// Report timestep and (optionally) write state to disk.
step_timer.start();
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
}
SimulatorReport sreport;
// Solve pressure equation.
if (check_well_controls_) {
computeFractionalFlow(props_, allcells_,
state.pressure(), state.temperature(), state.surfacevol(), state.saturation(),
fractional_flows);
wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
}
bool well_control_passed = !check_well_controls_;
int well_control_iteration = 0;
do {
// Run solver.
pressure_timer.start();
std::vector<double> initial_pressure = state.pressure();
psolver_.solve(timer.currentStepLength(), state, well_state);
// Renormalize pressure if both fluids and rock are
// incompressible, and there are no pressure
// conditions (bcs or wells). It is deemed sufficient
// for now to renormalize using geometric volume
// instead of pore volume.
if (psolver_.singularPressure()) {
// Compute average pressures of previous and last
// step, and total volume.
double av_prev_press = 0.0;
double av_press = 0.0;
double tot_vol = 0.0;
const int num_cells = grid_.number_of_cells;
for (int cell = 0; cell < num_cells; ++cell) {
av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
av_press += state.pressure()[cell]*grid_.cell_volumes[cell];
tot_vol += grid_.cell_volumes[cell];
}
// Renormalization constant
const double ren_const = (av_prev_press - av_press)/tot_vol;
for (int cell = 0; cell < num_cells; ++cell) {
state.pressure()[cell] += ren_const;
}
const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
for (int well = 0; well < num_wells; ++well) {
well_state.bhp()[well] += ren_const;
}
}
//.........这里部分代码省略.........
示例6: computeMaxDp
//.........这里部分代码省略.........
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
phasePressure[phaseIdx].resize(numCells);
}
for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
// we currently hard-code the oil phase as the reference phase!
assert(pu.phase_used[BlackoilPhases::Liquid]);
const int opos = pu.phase_pos[BlackoilPhases::Liquid];
phasePressure[opos][cellIdx] = initialState.pressure()[cellIdx];
if (pu.phase_used[BlackoilPhases::Aqua]) {
const int wpos = pu.phase_pos[BlackoilPhases::Aqua];
phasePressure[wpos][cellIdx] =
initialState.pressure()[cellIdx]
+ (capPress[cellIdx*numPhases + opos] - capPress[cellIdx*numPhases + wpos]);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
const int gpos = pu.phase_pos[BlackoilPhases::Vapour];
phasePressure[gpos][cellIdx] =
initialState.pressure()[cellIdx]
+ (capPress[cellIdx*numPhases + gpos] - capPress[cellIdx*numPhases + opos]);
}
}
// calculate the densities of the active phases for each cell
if (pu.phase_used[BlackoilPhases::Aqua]) {
const int wpos = pu.phase_pos[BlackoilPhases::Aqua];
const auto& pvtw = props.waterPvt();
for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
int pvtRegionIdx = pvtRegion[cellIdx];
double T = initialState.temperature()[cellIdx];
double p = phasePressure[wpos][cellIdx];
double b = pvtw.inverseFormationVolumeFactor(pvtRegionIdx, T, p);
rho[wpos][cellIdx] = surfaceDensity[pvtRegionIdx][wpos]*b;
}
}
if (pu.phase_used[BlackoilPhases::Liquid]) {
const int opos = pu.phase_pos[BlackoilPhases::Liquid];
const auto& pvto = props.oilPvt();
for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
int pvtRegionIdx = pvtRegion[cellIdx];
double T = initialState.temperature()[cellIdx];
double p = phasePressure[opos][cellIdx];
double Rs = initialState.gasoilratio()[cellIdx];
double RsSat = pvto.saturatedGasDissolutionFactor(pvtRegionIdx, T, p);
double b;
if (Rs >= RsSat) {
b = pvto.saturatedInverseFormationVolumeFactor(pvtRegionIdx, T, p);
}
else {
b = pvto.inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
}
rho[opos][cellIdx] = surfaceDensity[pvtRegionIdx][opos]*b;
if (pu.phase_used[BlackoilPhases::Vapour]) {
int gpos = pu.phase_pos[BlackoilPhases::Vapour];
rho[opos][cellIdx] += surfaceDensity[pvtRegionIdx][gpos]*Rs*b;
}
}