本文整理汇总了C++中BlackoilState::pressure方法的典型用法代码示例。如果您正苦于以下问题:C++ BlackoilState::pressure方法的具体用法?C++ BlackoilState::pressure怎么用?C++ BlackoilState::pressure使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类BlackoilState
的用法示例。
在下文中一共展示了BlackoilState::pressure方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: computeResults
/// Compute the output.
void CompressibleTpfa::computeResults(BlackoilState& state,
WellState& well_state) const
{
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
CompletionData completion_data;
completion_data.wdp = ! wellperf_wdp_.empty() ? const_cast<double*>(&wellperf_wdp_[0]) : 0;
completion_data.A = ! wellperf_A_.empty() ? const_cast<double*>(&wellperf_A_[0]) : 0;
completion_data.phasemob = ! wellperf_phasemob_.empty() ? const_cast<double*>(&wellperf_phasemob_[0]) : 0;
cfs_tpfa_res_wells wells_tmp;
wells_tmp.W = const_cast<Wells*>(wells_);
wells_tmp.data = &completion_data;
cfs_tpfa_res_forces forces;
forces.wells = &wells_tmp;
forces.src = NULL;
double* wpress = ! well_state.bhp ().empty() ? & well_state.bhp ()[0] : 0;
double* wflux = ! well_state.perfRates().empty() ? & well_state.perfRates()[0] : 0;
cfs_tpfa_res_flux(gg,
&forces,
props_.numPhases(),
&trans_[0],
&cell_phasemob_[0],
&face_phasemob_[0],
&face_gravcap_[0],
&state.pressure()[0],
wpress,
&state.faceflux()[0],
wflux);
cfs_tpfa_res_fpress(gg,
props_.numPhases(),
&htrans_[0],
&face_phasemob_[0],
&face_gravcap_[0],
h_,
&state.pressure()[0],
&state.faceflux()[0],
&state.facepressure()[0]);
// Compute well perforation pressures (not done by the C code).
if (wells_ != 0) {
const int nw = wells_->number_of_wells;
for (int w = 0; w < nw; ++w) {
for (int j = wells_->well_connpos[w]; j < wells_->well_connpos[w+1]; ++j) {
const double bhp = well_state.bhp()[w];
well_state.perfPress()[j] = bhp + wellperf_wdp_[j];
}
}
}
}
示例2:
void SimulatorBase<Implementation>::computeWellPotentials(const Wells* wells,
const BlackoilState& x,
const WellState& xw,
std::vector<double>& well_potentials)
{
const int nw = wells->number_of_wells;
const int np = wells->number_of_phases;
well_potentials.clear();
well_potentials.resize(nw*np,0.0);
for (int w = 0; w < nw; ++w) {
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
const double well_cell_pressure = x.pressure()[wells->well_cells[perf]];
const double drawdown_used = well_cell_pressure - xw.perfPress()[perf];
const WellControls* ctrl = wells->ctrls[w];
const int nwc = well_controls_get_num(ctrl);
//Loop over all controls until we find a BHP control
//that specifies what we need...
double bhp = 0.0;
for (int ctrl_index=0; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(ctrl, ctrl_index) == BHP) {
bhp = well_controls_iget_target(ctrl, ctrl_index);
}
// TODO: do something for thp;
}
// Calculate the pressure difference in the well perforation
const double dp = xw.perfPress()[perf] - xw.bhp()[w];
const double drawdown_maximum = well_cell_pressure - (bhp + dp);
for (int phase = 0; phase < np; ++phase) {
well_potentials[w*np + phase] += (drawdown_maximum / drawdown_used * xw.perfPhaseRates()[perf*np + phase]);
}
}
}
}
示例3: computeSaturation
/// @brief Computes saturation from surface volume
void computeSaturation(const BlackoilPropertiesInterface& props,
BlackoilState& state)
{
const int np = props.numPhases();
const int nc = props.numCells();
std::vector<double> allA(nc*np*np);
std::vector<int> allcells(nc);
for (int c = 0; c < nc; ++c) {
allcells[c] = c;
}
//std::vector<double> res_vol(np);
const std::vector<double>& z = state.surfacevol();
props.matrix(nc, &state.pressure()[0], &z[0], &allcells[0], &allA[0], 0);
// Linear solver.
MAT_SIZE_T n = np;
MAT_SIZE_T nrhs = 1;
MAT_SIZE_T lda = np;
std::vector<MAT_SIZE_T> piv(np);
MAT_SIZE_T ldb = np;
MAT_SIZE_T info = 0;
//double res_vol;
double tot_sat;
const double epsilon = std::sqrt(std::numeric_limits<double>::epsilon());
for (int c = 0; c < nc; ++c) {
double* A = &allA[c*np*np];
const double* z_loc = &z[c*np];
double* s = &state.saturation()[c*np];
for (int p = 0; p < np; ++p){
s[p] = z_loc[p];
}
dgesv_(&n, &nrhs, &A[0], &lda, &piv[0], &s[0], &ldb, &info);
tot_sat = 0;
for (int p = 0; p < np; ++p){
if (s[p] < epsilon) // saturation may be less then zero due to round of errors
s[p] = 0;
tot_sat += s[p];
}
for (int p = 0; p < np; ++p){
s[p] = s[p]/tot_sat;
}
}
}
示例4: computeCellDynamicData
/// Compute per-iteration dynamic properties for cells.
void CompressibleTpfaPolymer::computeCellDynamicData(const double /*dt*/,
const BlackoilState& state,
const WellState& /*well_state*/)
{
// These are the variables that get computed by this function:
//
// std::vector<double> cell_A_;
// std::vector<double> cell_dA_;
// std::vector<double> cell_viscosity_;
// std::vector<double> cell_eff_viscosity_;
// std::vector<double> cell_phasemob_;
// std::vector<double> cell_voldisc_;
// std::vector<double> porevol_; // Only modified if rock_comp_props_ is non-null.
// std::vector<double> rock_comp_; // Empty unless rock_comp_props_ is non-null.
const int nc = grid_.number_of_cells;
const int np = props_.numPhases();
const double* cell_p = &state.pressure()[0];
const double* cell_T = &state.temperature()[0];
const double* cell_z = &state.surfacevol()[0];
cell_A_.resize(nc*np*np);
cell_dA_.resize(nc*np*np);
props_.matrix(nc, cell_p, cell_T, cell_z, &allcells_[0], &cell_A_[0], &cell_dA_[0]);
cell_viscosity_.resize(nc*np);
props_.viscosity(nc, cell_p, cell_T, cell_z, &allcells_[0], &cell_viscosity_[0], 0);
cell_phasemob_.resize(nc*np);
for (int cell = 0; cell < nc; ++cell) {
poly_props_.effectiveVisc((*c_)[cell], cell_viscosity_[np*cell + 0], cell_eff_viscosity_[np*cell + 0]);
poly_props_.effectiveMobilities((*c_)[cell], (*cmax_)[cell], &cell_viscosity_[np*cell + 0], &cell_relperm_[np*cell + 0], &cell_phasemob_[np*cell + 0]);
}
// Volume discrepancy: we have that
// z = Au, voldiscr = sum(u) - 1,
// but I am not sure it is actually needed.
// Use zero for now.
// TODO: Check this!
cell_voldisc_.clear();
cell_voldisc_.resize(nc, 0.0);
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol_);
rock_comp_.resize(nc);
for (int cell = 0; cell < nc; ++cell) {
rock_comp_[cell] = rock_comp_props_->rockComp(state.pressure()[cell]);
}
}
}
示例5: computeInjectedProduced
/// @brief Computes injected and produced surface volumes of all phases.
/// Note 1: assumes that only the first phase is injected.
/// Note 2: assumes that transport has been done with an
/// implicit method, i.e. that the current state
/// gives the mobilities used for the preceding timestep.
/// Note 3: Gives surface volume values, not reservoir volumes
/// (as the incompressible version of the function does).
/// Also, assumes that transport_src is given in surface volumes
/// for injector terms!
/// @param[in] props fluid and rock properties.
/// @param[in] state state variables (pressure, sat, surfvol)
/// @param[in] transport_src if < 0: total resv outflow, if > 0: first phase surfv inflow
/// @param[in] dt timestep used
/// @param[out] injected must point to a valid array with P elements,
/// where P = s.size()/src.size().
/// @param[out] produced must also point to a valid array with P elements.
void computeInjectedProduced(const BlackoilPropertiesInterface& props,
const BlackoilState& state,
const std::vector<double>& transport_src,
const double dt,
double* injected,
double* produced)
{
const int num_cells = transport_src.size();
if (props.numCells() != num_cells) {
OPM_THROW(std::runtime_error, "Size of transport_src vector does not match number of cells in props.");
}
const int np = props.numPhases();
if (int(state.saturation().size()) != num_cells*np) {
OPM_THROW(std::runtime_error, "Sizes of state vectors do not match number of cells.");
}
const std::vector<double>& press = state.pressure();
const std::vector<double>& temp = state.temperature();
const std::vector<double>& s = state.saturation();
const std::vector<double>& z = state.surfacevol();
std::fill(injected, injected + np, 0.0);
std::fill(produced, produced + np, 0.0);
std::vector<double> visc(np);
std::vector<double> mob(np);
std::vector<double> A(np*np);
std::vector<double> prod_resv_phase(np);
std::vector<double> prod_surfvol(np);
for (int c = 0; c < num_cells; ++c) {
if (transport_src[c] > 0.0) {
// Inflowing transport source is a surface volume flux
// for the first phase.
injected[0] += transport_src[c]*dt;
} else if (transport_src[c] < 0.0) {
// Outflowing transport source is a total reservoir
// volume flux.
const double flux = -transport_src[c]*dt;
const double* sat = &s[np*c];
props.relperm(1, sat, &c, &mob[0], 0);
props.viscosity(1, &press[c], &temp[c], &z[np*c], &c, &visc[0], 0);
props.matrix(1, &press[c], &temp[c], &z[np*c], &c, &A[0], 0);
double totmob = 0.0;
for (int p = 0; p < np; ++p) {
mob[p] /= visc[p];
totmob += mob[p];
}
std::fill(prod_surfvol.begin(), prod_surfvol.end(), 0.0);
for (int p = 0; p < np; ++p) {
prod_resv_phase[p] = (mob[p]/totmob)*flux;
for (int q = 0; q < np; ++q) {
prod_surfvol[q] += prod_resv_phase[p]*A[q + np*p];
}
}
for (int p = 0; p < np; ++p) {
produced[p] += prod_surfvol[p];
}
}
}
}
示例6: computePerSolveDynamicData
/// Compute per-solve dynamic properties.
void CompressibleTpfa::computePerSolveDynamicData(const double /*dt*/,
const BlackoilState& state,
const WellState& /*well_state*/)
{
computeWellPotentials(state);
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), initial_porevol_);
}
}
示例7: averagePressure
/**
* Compute average hydrocarbon pressure in all regions.
*
* \param[in] state Dynamic reservoir state.
*/
void
averagePressure(const BlackoilState& state)
{
p_avg_.setZero();
const std::vector<double>& p = state.pressure();
for (std::vector<double>::size_type
i = 0, n = p.size(); i < n; ++i)
{
p_avg_(rmap_.region(i)) += p[i];
}
p_avg_ /= ncells_;
}
示例8: computePerSolveDynamicData
/// Compute per-solve dynamic properties.
void CompressibleTpfaPolymer::computePerSolveDynamicData(const double /* dt */,
const BlackoilState& state,
const WellState& /* well_state */)
{
// std::vector<double> cell_relperm__;
// std::vector<double> cell_eff_relperm_;
const int nc = grid_.number_of_cells;
const int np = props_.numPhases();
cell_relperm_.resize(nc*np);
cell_eff_viscosity_.resize(nc*np);
const double* cell_s = &state.saturation()[0];
props_.relperm(nc, cell_s, &allcells_[0], &cell_relperm_[0], 0);
computeWellPotentials(state);
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), initial_porevol_);
}
}
示例9: equals
bool equals(const BlackoilState& other, double epsilon = 1e-8) const {
bool equal = (numPhases() == other.numPhases());
for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++ phaseIdx) {
equal = equal && (usedPhases_.phase_used[phaseIdx] == other.usedPhases_.phase_used[phaseIdx]);
if (usedPhases_.phase_used[phaseIdx])
equal = equal && (usedPhases_.phase_pos[phaseIdx] == other.usedPhases_.phase_pos[phaseIdx]);
}
equal = equal && (vectorApproxEqual( pressure() , other.pressure() , epsilon));
equal = equal && (vectorApproxEqual( facepressure() , other.facepressure() , epsilon));
equal = equal && (vectorApproxEqual( faceflux() , other.faceflux() , epsilon));
equal = equal && (vectorApproxEqual( surfacevol() , other.surfacevol() , epsilon));
equal = equal && (vectorApproxEqual( saturation() , other.saturation() , epsilon));
equal = equal && (vectorApproxEqual( gasoilratio() , other.gasoilratio() , epsilon));
return equal;
}
示例10: assemble
/// Compute the residual and Jacobian.
void CompressibleTpfa::assemble(const double dt,
const BlackoilState& state,
const WellState& well_state)
{
const double* cell_press = &state.pressure()[0];
const double* well_bhp = well_state.bhp().empty() ? NULL : &well_state.bhp()[0];
const double* z = &state.surfacevol()[0];
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
CompletionData completion_data;
completion_data.wdp = ! wellperf_wdp_.empty() ? &wellperf_wdp_[0] : 0;
completion_data.A = ! wellperf_A_.empty() ? &wellperf_A_[0] : 0;
completion_data.phasemob = ! wellperf_phasemob_.empty() ? &wellperf_phasemob_[0] : 0;
cfs_tpfa_res_wells wells_tmp;
wells_tmp.W = const_cast<Wells*>(wells_);
wells_tmp.data = &completion_data;
cfs_tpfa_res_forces forces;
forces.wells = &wells_tmp;
forces.src = NULL; // Check if it is legal to leave it as NULL.
compr_quantities_gen cq;
cq.nphases = props_.numPhases();
cq.Ac = &cell_A_[0];
cq.dAc = &cell_dA_[0];
cq.Af = &face_A_[0];
cq.phasemobf = &face_phasemob_[0];
cq.voldiscr = &cell_voldisc_[0];
int was_adjusted = 0;
if (! (rock_comp_props_ && rock_comp_props_->isActive())) {
was_adjusted =
cfs_tpfa_res_assemble(gg, dt, &forces, z, &cq, &trans_[0],
&face_gravcap_[0], cell_press, well_bhp,
&porevol_[0], h_);
} else {
was_adjusted =
cfs_tpfa_res_comprock_assemble(gg, dt, &forces, z, &cq, &trans_[0],
&face_gravcap_[0], cell_press, well_bhp,
&porevol_[0], &initial_porevol_[0],
&rock_comp_[0], h_);
}
singular_ = (was_adjusted == 1);
}
示例11: computeWellPotentials
/// Compute well potentials.
void CompressibleTpfa::computeWellPotentials(const BlackoilState& state)
{
if (wells_ == NULL) return;
const int nw = wells_->number_of_wells;
const int np = props_.numPhases();
const int nperf = wells_->well_connpos[nw];
const int dim = grid_.dimensions;
const double grav = gravity_ ? gravity_[dim - 1] : 0.0;
wellperf_wdp_.clear();
wellperf_wdp_.resize(nperf, 0.0);
if (not (std::abs(grav) > 0.0)) {
return;
}
// Temporary storage for perforation A matrices and densities.
std::vector<double> A(np*np, 0.0);
std::vector<double> rho(np, 0.0);
// Main loop, iterate over all perforations,
// using the following formula (by phase):
// wdp(perf) = g*(perf_z - well_ref_z)*rho(perf)
// where the total density rho(perf) is taken to be
// sum_p (rho_p*saturation_p) in the perforation cell.
for (int w = 0; w < nw; ++w) {
const double ref_depth = wells_->depth_ref[w];
for (int j = wells_->well_connpos[w]; j < wells_->well_connpos[w + 1]; ++j) {
const int cell = wells_->well_cells[j];
const double cell_depth = grid_.cell_centroids[dim * cell + dim - 1];
props_.matrix(1, &state.pressure()[cell], &state.surfacevol()[np*cell], &cell, &A[0], 0);
props_.density(1, &A[0], &cell, &rho[0]);
for (int phase = 0; phase < np; ++phase) {
const double s_phase = state.saturation()[np*cell + phase];
wellperf_wdp_[j] += s_phase*rho[phase]*grav*(cell_depth - ref_depth);
}
}
}
}
示例12: param
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
using namespace Opm;
std::cout << "\n================ Test program for weakly compressible two-phase flow ===============\n\n";
parameter::ParameterGroup param(argc, argv, false);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
// If we have a "deck_filename", grid and props will be read from that.
bool use_deck = param.has("deck_filename");
EclipseStateConstPtr eclipseState;
std::unique_ptr<GridManager> grid;
std::unique_ptr<BlackoilPropertiesInterface> props;
std::unique_ptr<RockCompressibility> rock_comp;
ParserPtr parser(new Opm::Parser());
Opm::DeckConstPtr deck;
BlackoilState state;
// bool check_well_controls = false;
// int max_well_control_iterations = 0;
double gravity[3] = { 0.0 };
if (use_deck) {
ParseMode parseMode;
std::string deck_filename = param.get<std::string>("deck_filename");
deck = parser->parseFile(deck_filename , parseMode);
eclipseState.reset(new EclipseState(deck, parseMode));
// Grid init
grid.reset(new GridManager(deck));
// Rock and fluid init
props.reset(new BlackoilPropertiesFromDeck(deck, eclipseState, *grid->c_grid(), param));
// check_well_controls = param.getDefault("check_well_controls", false);
// max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
// Rock compressibility.
rock_comp.reset(new RockCompressibility(deck, eclipseState));
// Gravity.
gravity[2] = deck->hasKeyword("NOGRAV") ? 0.0 : unit::gravity;
// Init state variables (saturation and pressure).
if (param.has("init_saturation")) {
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
} else {
initStateFromDeck(*grid->c_grid(), *props, deck, gravity[2], state);
}
initBlackoilSurfvol(*grid->c_grid(), *props, state);
} else {
// Grid init.
const int nx = param.getDefault("nx", 100);
const int ny = param.getDefault("ny", 100);
const int nz = param.getDefault("nz", 1);
const double dx = param.getDefault("dx", 1.0);
const double dy = param.getDefault("dy", 1.0);
const double dz = param.getDefault("dz", 1.0);
grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
// Rock and fluid init.
props.reset(new BlackoilPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
// Rock compressibility.
rock_comp.reset(new RockCompressibility(param));
// Gravity.
gravity[2] = param.getDefault("gravity", 0.0);
// Init state variables (saturation and pressure).
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
initBlackoilSurfvol(*grid->c_grid(), *props, state);
}
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
const double *grav = use_gravity ? &gravity[0] : 0;
// Initialising src
int num_cells = grid->c_grid()->number_of_cells;
std::vector<double> src(num_cells, 0.0);
if (use_deck) {
// Do nothing, wells will be the driving force, not source terms.
} else {
// Compute pore volumes, in order to enable specifying injection rate
// terms of total pore volume.
std::vector<double> porevol;
if (rock_comp->isActive()) {
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
} else {
computePorevolume(*grid->c_grid(), props->porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
const double default_injection = use_gravity ? 0.0 : 0.1;
const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
*tot_porevol_init/unit::day;
src[0] = flow_per_sec;
src[num_cells - 1] = -flow_per_sec;
}
// Boundary conditions.
FlowBCManager bcs;
if (param.getDefault("use_pside", false)) {
int pside = param.get<int>("pside");
double pside_pressure = param.get<double>("pside_pressure");
bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
}
//.........这里部分代码省略.........
示例13: computeFaceDynamicData
/// Compute per-iteration dynamic properties for faces.
void CompressibleTpfa::computeFaceDynamicData(const double /*dt*/,
const BlackoilState& state,
const WellState& /*well_state*/)
{
// These are the variables that get computed by this function:
//
// std::vector<double> face_A_;
// std::vector<double> face_phasemob_;
// std::vector<double> face_gravcap_;
const int np = props_.numPhases();
const int nf = grid_.number_of_faces;
const int dim = grid_.dimensions;
const double grav = gravity_ ? gravity_[dim - 1] : 0.0;
std::vector<double> gravcontrib[2];
std::vector<double> pot[2];
gravcontrib[0].resize(np);
gravcontrib[1].resize(np);
pot[0].resize(np);
pot[1].resize(np);
face_A_.resize(nf*np*np);
face_phasemob_.resize(nf*np);
face_gravcap_.resize(nf*np);
for (int face = 0; face < nf; ++face) {
// Obtain properties from both sides of the face.
const double face_depth = grid_.face_centroids[face*dim + dim - 1];
const int* c = &grid_.face_cells[2*face];
// Get pressures and compute gravity contributions,
// to decide upwind directions.
double c_press[2];
for (int j = 0; j < 2; ++j) {
if (c[j] >= 0) {
// Pressure
c_press[j] = state.pressure()[c[j]];
// Gravity contribution, gravcontrib = rho*(face_z - cell_z) [per phase].
if (grav != 0.0) {
const double depth_diff = face_depth - grid_.cell_centroids[c[j]*dim + dim - 1];
props_.density(1, &cell_A_[np*np*c[j]], &c[j], &gravcontrib[j][0]);
for (int p = 0; p < np; ++p) {
gravcontrib[j][p] *= depth_diff*grav;
}
} else {
std::fill(gravcontrib[j].begin(), gravcontrib[j].end(), 0.0);
}
} else {
// Pressures
c_press[j] = state.facepressure()[face];
// Gravity contribution.
std::fill(gravcontrib[j].begin(), gravcontrib[j].end(), 0.0);
}
}
// Gravity contribution:
// gravcapf = rho_1*g*(z_12 - z_1) - rho_2*g*(z_12 - z_2)
// where _1 and _2 refers to two neigbour cells, z is the
// z coordinate of the centroid, and z_12 is the face centroid.
// Also compute the potentials.
for (int phase = 0; phase < np; ++phase) {
face_gravcap_[np*face + phase] = gravcontrib[0][phase] - gravcontrib[1][phase];
pot[0][phase] = c_press[0] + face_gravcap_[np*face + phase];
pot[1][phase] = c_press[1];
}
// Now we can easily find the upwind direction for every phase,
// we can also tell which boundary faces are inflow bdys.
// Get upwind mobilities by phase.
// Get upwind A matrix rows by phase.
// NOTE:
// We should be careful to upwind the R factors,
// the B factors are not that vital.
// z = Au = RB^{-1}u,
// where (this example is for gas-oil)
// R = [1 RgL; RoV 1], B = [BL 0 ; 0 BV]
// (RgL is gas in Liquid phase, RoV is oil in Vapour phase.)
// A = [1/BL RgL/BV; RoV/BL 1/BV]
// This presents us with a dilemma, as V factors should be
// upwinded according to V phase flow, same for L. What then
// about the RgL/BV and RoV/BL numbers?
// We give priority to R, and therefore upwind the rows of A
// by phase (but remember, Fortran matrix ordering).
// This prompts the question if we should split the matrix()
// property method into formation volume and R-factor methods.
for (int phase = 0; phase < np; ++phase) {
int upwindc = -1;
if (c[0] >=0 && c[1] >= 0) {
upwindc = (pot[0][phase] < pot[1][phase]) ? c[1] : c[0];
} else {
upwindc = (c[0] >= 0) ? c[0] : c[1];
}
face_phasemob_[np*face + phase] = cell_phasemob_[np*upwindc + phase];
for (int p2 = 0; p2 < np; ++p2) {
// Recall: column-major ordering.
face_A_[np*np*face + phase + np*p2]
= cell_A_[np*np*upwindc + phase + np*p2];
}
}
}
}
示例14: solve
/// Solve pressure equation, by Newton iterations.
void CompressibleTpfa::solve(const double dt,
BlackoilState& state,
WellState& well_state)
{
const int nc = grid_.number_of_cells;
const int nw = (wells_ != 0) ? wells_->number_of_wells : 0;
// Set up dynamic data.
computePerSolveDynamicData(dt, state, well_state);
computePerIterationDynamicData(dt, state, well_state);
// Assemble J and F.
assemble(dt, state, well_state);
double inc_norm = 0.0;
int iter = 0;
double res_norm = residualNorm();
std::cout << "\nIteration Residual Change in p\n"
<< std::setw(9) << iter
<< std::setw(18) << res_norm
<< std::setw(18) << '*' << std::endl;
while ((iter < maxiter_) && (res_norm > residual_tol_)) {
// Solve for increment in Newton method:
// incr = x_{n+1} - x_{n} = -J^{-1}F
// (J is Jacobian matrix, F is residual)
solveIncrement();
++iter;
// Update pressure vars with increment.
for (int c = 0; c < nc; ++c) {
state.pressure()[c] += pressure_increment_[c];
}
for (int w = 0; w < nw; ++w) {
well_state.bhp()[w] += pressure_increment_[nc + w];
}
// Stop iterating if increment is small.
inc_norm = incrementNorm();
if (inc_norm <= change_tol_) {
std::cout << std::setw(9) << iter
<< std::setw(18) << '*'
<< std::setw(18) << inc_norm << std::endl;
break;
}
// Set up dynamic data.
computePerIterationDynamicData(dt, state, well_state);
// Assemble J and F.
assemble(dt, state, well_state);
// Update residual norm.
res_norm = residualNorm();
std::cout << std::setw(9) << iter
<< std::setw(18) << res_norm
<< std::setw(18) << inc_norm << std::endl;
}
if ((iter == maxiter_) && (res_norm > residual_tol_) && (inc_norm > change_tol_)) {
OPM_THROW(std::runtime_error, "CompressibleTpfa::solve() failed to converge in " << maxiter_ << " iterations.");
}
std::cout << "Solved pressure in " << iter << " iterations." << std::endl;
// Compute fluxes and face pressures.
computeResults(state, well_state);
}
示例15: computePorevolume
SimulatorReport SimulatorCompressibleTwophase::Impl::run(SimulatorTimer& timer,
BlackoilState& state,
WellState& well_state)
{
std::vector<double> transport_src;
// Initialisation.
std::vector<double> porevol;
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
} else {
computePorevolume(grid_, props_.porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
std::vector<double> initial_porevol = porevol;
// Main simulation loop.
Opm::time::StopWatch pressure_timer;
double ptime = 0.0;
Opm::time::StopWatch transport_timer;
double ttime = 0.0;
Opm::time::StopWatch step_timer;
Opm::time::StopWatch total_timer;
total_timer.start();
double init_surfvol[2] = { 0.0 };
double inplace_surfvol[2] = { 0.0 };
double tot_injected[2] = { 0.0 };
double tot_produced[2] = { 0.0 };
Opm::computeSaturatedVol(porevol, state.surfacevol(), init_surfvol);
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
Opm::WellReport wellreport;
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
if (wells_) {
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
wellreport.push(props_, *wells_,
state.pressure(), state.surfacevol(), state.saturation(),
0.0, well_state.bhp(), well_state.perfRates());
}
std::fstream tstep_os;
if (output_) {
std::string filename = output_dir_ + "/step_timing.param";
tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
}
for (; !timer.done(); ++timer) {
// Report timestep and (optionally) write state to disk.
step_timer.start();
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
}
SimulatorReport sreport;
// Solve pressure equation.
if (check_well_controls_) {
computeFractionalFlow(props_, allcells_,
state.pressure(), state.temperature(), state.surfacevol(), state.saturation(),
fractional_flows);
wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
}
bool well_control_passed = !check_well_controls_;
int well_control_iteration = 0;
do {
// Run solver.
pressure_timer.start();
std::vector<double> initial_pressure = state.pressure();
psolver_.solve(timer.currentStepLength(), state, well_state);
// Renormalize pressure if both fluids and rock are
// incompressible, and there are no pressure
// conditions (bcs or wells). It is deemed sufficient
// for now to renormalize using geometric volume
// instead of pore volume.
if (psolver_.singularPressure()) {
// Compute average pressures of previous and last
// step, and total volume.
double av_prev_press = 0.0;
double av_press = 0.0;
double tot_vol = 0.0;
const int num_cells = grid_.number_of_cells;
for (int cell = 0; cell < num_cells; ++cell) {
av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
av_press += state.pressure()[cell]*grid_.cell_volumes[cell];
tot_vol += grid_.cell_volumes[cell];
}
// Renormalization constant
const double ren_const = (av_prev_press - av_press)/tot_vol;
for (int cell = 0; cell < num_cells; ++cell) {
state.pressure()[cell] += ren_const;
}
const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
for (int well = 0; well < num_wells; ++well) {
well_state.bhp()[well] += ren_const;
}
}
//.........这里部分代码省略.........