当前位置: 首页>>代码示例>>C++>>正文


C++ BigMatrix::nrow方法代码示例

本文整理汇总了C++中BigMatrix::nrow方法的典型用法代码示例。如果您正苦于以下问题:C++ BigMatrix::nrow方法的具体用法?C++ BigMatrix::nrow怎么用?C++ BigMatrix::nrow使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在BigMatrix的用法示例。


在下文中一共展示了BigMatrix::nrow方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: SepMatrixAccessor

 SepMatrixAccessor( BigMatrix &bm)
 {
   _ppMat = reinterpret_cast<T**>(bm.matrix());
   _rowOffset = bm.row_offset();
   _colOffset = bm.col_offset();
   _totalRows = bm.nrow();
 }
开发者ID:austian,项目名称:bigExplore,代码行数:7,代码来源:MatrixAccessor.hpp

示例2: install

/* Pointer utility, returns a double pointer for either a BigMatrix or a
 * standard R matrix.
 */
double *
make_double_ptr (SEXP matrix, SEXP isBigMatrix)
{
  double *matrix_ptr;

  if (LOGICAL_VALUE (isBigMatrix) == (Rboolean) TRUE)   // Big Matrix
    {
      SEXP address = GET_SLOT (matrix, install ("address"));
      BigMatrix *pbm =
        reinterpret_cast < BigMatrix * >(R_ExternalPtrAddr (address));
      if (!pbm)
        return (NULL);

      // Check that have acceptable big.matrix
      if (pbm->row_offset () > 0 && pbm->ncol () > 1)
        {
          std::string errMsg =
            string ("sub.big.matrix objects cannoth have row ") +
            string
            ("offset greater than zero and number of columns greater than 1");
          Rf_error (errMsg.c_str ());
          return (NULL);
        }

      index_type offset = pbm->nrow () * pbm->col_offset ();
      matrix_ptr = reinterpret_cast < double *>(pbm->matrix ()) + offset;
    }
  else                          // Regular R Matrix
    {
      matrix_ptr = NUMERIC_DATA (matrix);
    }

  return (matrix_ptr);
};
开发者ID:cran,项目名称:bigalgebra,代码行数:37,代码来源:bigalgebra.cpp

示例3: moda

/* Prepares the a matrix based on random sample of examples for modelling. For
   each continuous variable, copies only the in-sample indices from asave to a.
   Data for categorical variables are not copied, as they are stored in x.
   This function should only be called if there are any continuous variables. */
SEXP moda(SEXP asaveP, SEXP aP, SEXP insampP) {
    // Initialize function arguments.
    BigMatrix *asave = (BigMatrix*)R_ExternalPtrAddr(asaveP);
    BigMatrix *a = (BigMatrix*)R_ExternalPtrAddr(aP);
    MatrixAccessor<int> asaveAcc(*asave);
    MatrixAccessor<int> aAcc(*a);
    int *asaveCol, *aCol;
    int *insamp = INTEGER(insampP);
    
    // Set up working variables.
    index_type nCols = asave->ncol();
    index_type nRows = asave->nrow();
    index_type i, ja, jb;
    
    // For each numerical variable, move all the in-sample data to the top rows
    // of a.
    for (i = 0; i < nCols; i++) {
        asaveCol = asaveAcc[i];
        aCol = aAcc[i];
        for (ja = 0, jb = 0; ja < nRows; ja++) {
            if (insamp[asaveCol[ja] - 1] >= 1) {
                aCol[jb++] = asaveCol[ja];
            }
        }
    }
    return R_NilValue;
}
开发者ID:DucQuang1,项目名称:bigrf,代码行数:31,代码来源:moda.cpp

示例4: MatrixAccessor

 MatrixAccessor( BigMatrix &bm )
 {
   _pMat = reinterpret_cast<T*>(bm.matrix());
   _totalRows = bm.total_rows();
   _totalCols = bm.total_columns();
   _rowOffset = bm.row_offset();
   _colOffset = bm.col_offset();
   _nrow = bm.nrow();
   _ncol = bm.ncol();
 }
开发者ID:cran,项目名称:bigmemory,代码行数:10,代码来源:MatrixAccessor.hpp

示例5: ComputePvalsMain

SEXP ComputePvalsMain(SEXP Rinmat, SEXP Routmat, SEXP Routcol) {
    BigMatrix *inMat = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(Rinmat));
    BigMatrix *outMat = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(Routmat));
    double outCol = NUMERIC_DATA(Routcol)[0];
    
    if (inMat->separated_columns() != outMat->separated_columns())
        Rf_error("all big matrices are not the same column separated type");
    if (inMat->matrix_type() != outMat->matrix_type())
        Rf_error("all big matrices are not the same matrix type");
    if (inMat->ncol() != outMat->nrow())
        Rf_error("inMat # of cols must be the same as outMat # of rows");
    
    CALL_BIGFUNCTION_ARGS_THREE(ComputePvals, inMat, outMat, outCol)
    return(ret);
}
开发者ID:czarrar,项目名称:connectir,代码行数:15,代码来源:adonis.cpp

示例6: binit1BigMatrix

SEXP binit1BigMatrix(SEXP x, SEXP col, SEXP breaks)
{
  BigMatrix *pMat =  reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(x));
  if (pMat->separated_columns())
  {
    switch (pMat->matrix_type())
    {
      case 1:
        return CBinIt1<char>(SepMatrixAccessor<char>(*pMat),
          pMat->nrow(), col, breaks);
      case 2:
        return CBinIt1<short>(SepMatrixAccessor<short>(*pMat),
          pMat->nrow(), col, breaks);
      case 4:
        return CBinIt1<int>(SepMatrixAccessor<int>(*pMat),
          pMat->nrow(), col, breaks);
      case 8:
        return CBinIt1<double>(SepMatrixAccessor<double>(*pMat),
          pMat->nrow(), col, breaks);
    }
  }
  else
  {
    switch (pMat->matrix_type())
    {
      case 1:
        return CBinIt1<char>(MatrixAccessor<char>(*pMat),
          pMat->nrow(), col, breaks);
      case 2:
        return CBinIt1<short>(MatrixAccessor<short>(*pMat),
          pMat->nrow(), col, breaks);
      case 4:
        return CBinIt1<int>(MatrixAccessor<int>(*pMat),
          pMat->nrow(), col, breaks);
      case 8:
        return CBinIt1<double>(MatrixAccessor<double>(*pMat),
          pMat->nrow(), col, breaks);
    }
  }
  return R_NilValue;
}
开发者ID:akiniwa,项目名称:biganalytics,代码行数:41,代码来源:binit.cpp

示例7: kmeansMatrixEuclid

SEXP kmeansMatrixEuclid(MatrixType x, index_type n, index_type m,
                  SEXP pcen, SEXP pclust, SEXP pclustsizes,
                  SEXP pwss, SEXP itermax)
{

  index_type j, col, nchange;

  int maxiters = Rf_asInteger(itermax);
  SEXP Riter;
  Rf_protect(Riter = Rf_allocVector(INTSXP, 1));
  int *iter = INTEGER(Riter);
  iter[0] = 0;

  BigMatrix *pcent = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(pcen));
  MatrixAccessor<double> cent(*pcent);
  BigMatrix *Pclust = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(pclust));
  MatrixAccessor<int> clust(*Pclust);
  BigMatrix *Pclustsizes = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(pclustsizes));
  MatrixAccessor<double> clustsizes(*Pclustsizes);
  BigMatrix *Pwss = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(pwss));
  MatrixAccessor<double> ss(*Pwss);

  int k = (int) pcent->nrow();                // number of clusters
  int cl, bestcl, oldcluster, newcluster;
  int done = 0;

  double temp;
  vector<double> d(k);                        // Vector of distances, internal only.
  vector<double> temp1(k);
  vector<vector<double> > tempcent(m, temp1); // For copy of global centroids k x m

  // At this point I can use [][] to access things, with ss[0][cl]
  // being used for the vectors, for example.
  // Before starting the loop, we only have cent (centers) as passed into the function.
  // Calculate clust and clustsizes, then update cent as centroids.
  
  for (cl=0; cl<k; cl++) clustsizes[0][cl] = 0.0;
  for (j=0; j<n; j++) {
    bestcl = 0;
    for (cl=0; cl<k; cl++) {
      d[cl] = 0.0;
      for (col=0; col<m; col++) {
        temp = (double)x[col][j] - cent[col][cl];
        d[cl] += temp * temp;
      }
      if (d[cl]<d[bestcl]) bestcl = cl;
    }
    clust[0][j] = bestcl + 1;          // Saving the R cluster number, not the C index.
    clustsizes[0][bestcl]++;
    for (col=0; col<m; col++)
      tempcent[col][bestcl] += (double)x[col][j];
  }
  for (cl=0; cl<k; cl++)
    for (col=0; col<m; col++)
      cent[col][cl] = tempcent[col][cl] / clustsizes[0][cl];

  do {

    nchange = 0;
    for (j=0; j<n; j++) { // For each of my points, this is offset from hash position

      oldcluster = clust[0][j] - 1;
      bestcl = 0;
      for (cl=0; cl<k; cl++) {         // Consider each of the clusters
        d[cl] = 0.0;                   // We'll get the distance to this cluster.
        for (col=0; col<m; col++) {    // Loop over the dimension of the data
          temp = (double)x[col][j] - cent[col][cl];
          d[cl] += temp * temp;
        }
        if (d[cl]<d[bestcl]) bestcl = cl;
      } // End of looking over the clusters for this j

      if (d[bestcl] < d[oldcluster]) {           // MADE A CHANGE!
        newcluster = bestcl;
        clust[0][j] = newcluster + 1;
        nchange++;
        clustsizes[0][newcluster]++;
        clustsizes[0][oldcluster]--;
        for (col=0; col<m; col++) {
          cent[col][oldcluster] += ( cent[col][oldcluster] - (double)x[col][j] ) / clustsizes[0][oldcluster];
          cent[col][newcluster] += ( (double)x[col][j] - cent[col][newcluster] ) / clustsizes[0][newcluster];
        }
      }

    } // End of this pass over my points.

    iter[0]++;
    if ( (nchange==0) || (iter[0]>=maxiters) ) done = 1;

  } while (done==0);

  // Collect the sums of squares now that we're done.
  for (cl=0; cl<k; cl++) ss[0][cl] = 0.0;
  for (j=0; j<n; j++) {
    for (col=0; col<m; col++) {
      cl = clust[0][j]-1;
      temp = (double)x[col][j] - cent[col][cl];
      ss[0][cl] += temp * temp;
    }
  }
//.........这里部分代码省略.........
开发者ID:kaneplusplus,项目名称:biganalytics,代码行数:101,代码来源:kmeans.cpp

示例8: kmeansBigMatrix

SEXP kmeansBigMatrix(SEXP x, SEXP cen, SEXP clust, SEXP clustsizes,
                     SEXP wss, SEXP itermax, SEXP dist)
{
  BigMatrix *pMat =  reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(x));
  int dist_calc = INTEGER(dist)[0];
  if (dist_calc == 0)
  {
    if (pMat->separated_columns())
    {
      switch (pMat->matrix_type())
      {
        case 1:
          return kmeansMatrixEuclid<char>(SepMatrixAccessor<char>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 2:
          return kmeansMatrixEuclid<short>(SepMatrixAccessor<short>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 4:
          return kmeansMatrixEuclid<int>(SepMatrixAccessor<int>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 8:
          return kmeansMatrixEuclid<double>(SepMatrixAccessor<double>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
      }
    }
    else
    {
      switch (pMat->matrix_type())
      {
        case 1:
          return kmeansMatrixEuclid<char>(MatrixAccessor<char>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 2:
          return kmeansMatrixEuclid<short>(MatrixAccessor<short>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 4:
          return kmeansMatrixEuclid<int>(MatrixAccessor<int>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 8:
          return kmeansMatrixEuclid<double>(MatrixAccessor<double>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
      }
    }
  }
  else
  {
    if (pMat->separated_columns())
    {
      switch (pMat->matrix_type())
      {
        case 1:
          return kmeansMatrixCosine<char>(SepMatrixAccessor<char>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 2:
          return kmeansMatrixCosine<short>(SepMatrixAccessor<short>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 4:
          return kmeansMatrixCosine<int>(SepMatrixAccessor<int>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 8:
           return kmeansMatrixCosine<double>(SepMatrixAccessor<double>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
      }
    }
    else
    {
      switch (pMat->matrix_type())
      {
        case 1:
          return kmeansMatrixCosine<char>(MatrixAccessor<char>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 2:
          return kmeansMatrixCosine<short>(MatrixAccessor<short>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 4:
          return kmeansMatrixCosine<int>(MatrixAccessor<int>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 8:
           return kmeansMatrixCosine<double>(MatrixAccessor<double>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
      }
    }
  }
  return R_NilValue;
}
开发者ID:kaneplusplus,项目名称:biganalytics,代码行数:85,代码来源:kmeans.cpp


注:本文中的BigMatrix::nrow方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。