本文整理汇总了C++中BigMatrix::nrow方法的典型用法代码示例。如果您正苦于以下问题:C++ BigMatrix::nrow方法的具体用法?C++ BigMatrix::nrow怎么用?C++ BigMatrix::nrow使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类BigMatrix
的用法示例。
在下文中一共展示了BigMatrix::nrow方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: SepMatrixAccessor
SepMatrixAccessor( BigMatrix &bm)
{
_ppMat = reinterpret_cast<T**>(bm.matrix());
_rowOffset = bm.row_offset();
_colOffset = bm.col_offset();
_totalRows = bm.nrow();
}
示例2: install
/* Pointer utility, returns a double pointer for either a BigMatrix or a
* standard R matrix.
*/
double *
make_double_ptr (SEXP matrix, SEXP isBigMatrix)
{
double *matrix_ptr;
if (LOGICAL_VALUE (isBigMatrix) == (Rboolean) TRUE) // Big Matrix
{
SEXP address = GET_SLOT (matrix, install ("address"));
BigMatrix *pbm =
reinterpret_cast < BigMatrix * >(R_ExternalPtrAddr (address));
if (!pbm)
return (NULL);
// Check that have acceptable big.matrix
if (pbm->row_offset () > 0 && pbm->ncol () > 1)
{
std::string errMsg =
string ("sub.big.matrix objects cannoth have row ") +
string
("offset greater than zero and number of columns greater than 1");
Rf_error (errMsg.c_str ());
return (NULL);
}
index_type offset = pbm->nrow () * pbm->col_offset ();
matrix_ptr = reinterpret_cast < double *>(pbm->matrix ()) + offset;
}
else // Regular R Matrix
{
matrix_ptr = NUMERIC_DATA (matrix);
}
return (matrix_ptr);
};
示例3: moda
/* Prepares the a matrix based on random sample of examples for modelling. For
each continuous variable, copies only the in-sample indices from asave to a.
Data for categorical variables are not copied, as they are stored in x.
This function should only be called if there are any continuous variables. */
SEXP moda(SEXP asaveP, SEXP aP, SEXP insampP) {
// Initialize function arguments.
BigMatrix *asave = (BigMatrix*)R_ExternalPtrAddr(asaveP);
BigMatrix *a = (BigMatrix*)R_ExternalPtrAddr(aP);
MatrixAccessor<int> asaveAcc(*asave);
MatrixAccessor<int> aAcc(*a);
int *asaveCol, *aCol;
int *insamp = INTEGER(insampP);
// Set up working variables.
index_type nCols = asave->ncol();
index_type nRows = asave->nrow();
index_type i, ja, jb;
// For each numerical variable, move all the in-sample data to the top rows
// of a.
for (i = 0; i < nCols; i++) {
asaveCol = asaveAcc[i];
aCol = aAcc[i];
for (ja = 0, jb = 0; ja < nRows; ja++) {
if (insamp[asaveCol[ja] - 1] >= 1) {
aCol[jb++] = asaveCol[ja];
}
}
}
return R_NilValue;
}
示例4: MatrixAccessor
MatrixAccessor( BigMatrix &bm )
{
_pMat = reinterpret_cast<T*>(bm.matrix());
_totalRows = bm.total_rows();
_totalCols = bm.total_columns();
_rowOffset = bm.row_offset();
_colOffset = bm.col_offset();
_nrow = bm.nrow();
_ncol = bm.ncol();
}
示例5: ComputePvalsMain
SEXP ComputePvalsMain(SEXP Rinmat, SEXP Routmat, SEXP Routcol) {
BigMatrix *inMat = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(Rinmat));
BigMatrix *outMat = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(Routmat));
double outCol = NUMERIC_DATA(Routcol)[0];
if (inMat->separated_columns() != outMat->separated_columns())
Rf_error("all big matrices are not the same column separated type");
if (inMat->matrix_type() != outMat->matrix_type())
Rf_error("all big matrices are not the same matrix type");
if (inMat->ncol() != outMat->nrow())
Rf_error("inMat # of cols must be the same as outMat # of rows");
CALL_BIGFUNCTION_ARGS_THREE(ComputePvals, inMat, outMat, outCol)
return(ret);
}
示例6: binit1BigMatrix
SEXP binit1BigMatrix(SEXP x, SEXP col, SEXP breaks)
{
BigMatrix *pMat = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(x));
if (pMat->separated_columns())
{
switch (pMat->matrix_type())
{
case 1:
return CBinIt1<char>(SepMatrixAccessor<char>(*pMat),
pMat->nrow(), col, breaks);
case 2:
return CBinIt1<short>(SepMatrixAccessor<short>(*pMat),
pMat->nrow(), col, breaks);
case 4:
return CBinIt1<int>(SepMatrixAccessor<int>(*pMat),
pMat->nrow(), col, breaks);
case 8:
return CBinIt1<double>(SepMatrixAccessor<double>(*pMat),
pMat->nrow(), col, breaks);
}
}
else
{
switch (pMat->matrix_type())
{
case 1:
return CBinIt1<char>(MatrixAccessor<char>(*pMat),
pMat->nrow(), col, breaks);
case 2:
return CBinIt1<short>(MatrixAccessor<short>(*pMat),
pMat->nrow(), col, breaks);
case 4:
return CBinIt1<int>(MatrixAccessor<int>(*pMat),
pMat->nrow(), col, breaks);
case 8:
return CBinIt1<double>(MatrixAccessor<double>(*pMat),
pMat->nrow(), col, breaks);
}
}
return R_NilValue;
}
示例7: kmeansMatrixEuclid
SEXP kmeansMatrixEuclid(MatrixType x, index_type n, index_type m,
SEXP pcen, SEXP pclust, SEXP pclustsizes,
SEXP pwss, SEXP itermax)
{
index_type j, col, nchange;
int maxiters = Rf_asInteger(itermax);
SEXP Riter;
Rf_protect(Riter = Rf_allocVector(INTSXP, 1));
int *iter = INTEGER(Riter);
iter[0] = 0;
BigMatrix *pcent = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(pcen));
MatrixAccessor<double> cent(*pcent);
BigMatrix *Pclust = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(pclust));
MatrixAccessor<int> clust(*Pclust);
BigMatrix *Pclustsizes = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(pclustsizes));
MatrixAccessor<double> clustsizes(*Pclustsizes);
BigMatrix *Pwss = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(pwss));
MatrixAccessor<double> ss(*Pwss);
int k = (int) pcent->nrow(); // number of clusters
int cl, bestcl, oldcluster, newcluster;
int done = 0;
double temp;
vector<double> d(k); // Vector of distances, internal only.
vector<double> temp1(k);
vector<vector<double> > tempcent(m, temp1); // For copy of global centroids k x m
// At this point I can use [][] to access things, with ss[0][cl]
// being used for the vectors, for example.
// Before starting the loop, we only have cent (centers) as passed into the function.
// Calculate clust and clustsizes, then update cent as centroids.
for (cl=0; cl<k; cl++) clustsizes[0][cl] = 0.0;
for (j=0; j<n; j++) {
bestcl = 0;
for (cl=0; cl<k; cl++) {
d[cl] = 0.0;
for (col=0; col<m; col++) {
temp = (double)x[col][j] - cent[col][cl];
d[cl] += temp * temp;
}
if (d[cl]<d[bestcl]) bestcl = cl;
}
clust[0][j] = bestcl + 1; // Saving the R cluster number, not the C index.
clustsizes[0][bestcl]++;
for (col=0; col<m; col++)
tempcent[col][bestcl] += (double)x[col][j];
}
for (cl=0; cl<k; cl++)
for (col=0; col<m; col++)
cent[col][cl] = tempcent[col][cl] / clustsizes[0][cl];
do {
nchange = 0;
for (j=0; j<n; j++) { // For each of my points, this is offset from hash position
oldcluster = clust[0][j] - 1;
bestcl = 0;
for (cl=0; cl<k; cl++) { // Consider each of the clusters
d[cl] = 0.0; // We'll get the distance to this cluster.
for (col=0; col<m; col++) { // Loop over the dimension of the data
temp = (double)x[col][j] - cent[col][cl];
d[cl] += temp * temp;
}
if (d[cl]<d[bestcl]) bestcl = cl;
} // End of looking over the clusters for this j
if (d[bestcl] < d[oldcluster]) { // MADE A CHANGE!
newcluster = bestcl;
clust[0][j] = newcluster + 1;
nchange++;
clustsizes[0][newcluster]++;
clustsizes[0][oldcluster]--;
for (col=0; col<m; col++) {
cent[col][oldcluster] += ( cent[col][oldcluster] - (double)x[col][j] ) / clustsizes[0][oldcluster];
cent[col][newcluster] += ( (double)x[col][j] - cent[col][newcluster] ) / clustsizes[0][newcluster];
}
}
} // End of this pass over my points.
iter[0]++;
if ( (nchange==0) || (iter[0]>=maxiters) ) done = 1;
} while (done==0);
// Collect the sums of squares now that we're done.
for (cl=0; cl<k; cl++) ss[0][cl] = 0.0;
for (j=0; j<n; j++) {
for (col=0; col<m; col++) {
cl = clust[0][j]-1;
temp = (double)x[col][j] - cent[col][cl];
ss[0][cl] += temp * temp;
}
}
//.........这里部分代码省略.........
示例8: kmeansBigMatrix
SEXP kmeansBigMatrix(SEXP x, SEXP cen, SEXP clust, SEXP clustsizes,
SEXP wss, SEXP itermax, SEXP dist)
{
BigMatrix *pMat = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(x));
int dist_calc = INTEGER(dist)[0];
if (dist_calc == 0)
{
if (pMat->separated_columns())
{
switch (pMat->matrix_type())
{
case 1:
return kmeansMatrixEuclid<char>(SepMatrixAccessor<char>(*pMat),
pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
case 2:
return kmeansMatrixEuclid<short>(SepMatrixAccessor<short>(*pMat),
pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
case 4:
return kmeansMatrixEuclid<int>(SepMatrixAccessor<int>(*pMat),
pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
case 8:
return kmeansMatrixEuclid<double>(SepMatrixAccessor<double>(*pMat),
pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
}
}
else
{
switch (pMat->matrix_type())
{
case 1:
return kmeansMatrixEuclid<char>(MatrixAccessor<char>(*pMat),
pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
case 2:
return kmeansMatrixEuclid<short>(MatrixAccessor<short>(*pMat),
pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
case 4:
return kmeansMatrixEuclid<int>(MatrixAccessor<int>(*pMat),
pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
case 8:
return kmeansMatrixEuclid<double>(MatrixAccessor<double>(*pMat),
pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
}
}
}
else
{
if (pMat->separated_columns())
{
switch (pMat->matrix_type())
{
case 1:
return kmeansMatrixCosine<char>(SepMatrixAccessor<char>(*pMat),
pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
case 2:
return kmeansMatrixCosine<short>(SepMatrixAccessor<short>(*pMat),
pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
case 4:
return kmeansMatrixCosine<int>(SepMatrixAccessor<int>(*pMat),
pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
case 8:
return kmeansMatrixCosine<double>(SepMatrixAccessor<double>(*pMat),
pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
}
}
else
{
switch (pMat->matrix_type())
{
case 1:
return kmeansMatrixCosine<char>(MatrixAccessor<char>(*pMat),
pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
case 2:
return kmeansMatrixCosine<short>(MatrixAccessor<short>(*pMat),
pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
case 4:
return kmeansMatrixCosine<int>(MatrixAccessor<int>(*pMat),
pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
case 8:
return kmeansMatrixCosine<double>(MatrixAccessor<double>(*pMat),
pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
}
}
}
return R_NilValue;
}