当前位置: 首页>>代码示例>>C++>>正文


C++ BigMatrix类代码示例

本文整理汇总了C++中BigMatrix的典型用法代码示例。如果您正苦于以下问题:C++ BigMatrix类的具体用法?C++ BigMatrix怎么用?C++ BigMatrix使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了BigMatrix类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: moda

/* Prepares the a matrix based on random sample of examples for modelling. For
   each continuous variable, copies only the in-sample indices from asave to a.
   Data for categorical variables are not copied, as they are stored in x.
   This function should only be called if there are any continuous variables. */
SEXP moda(SEXP asaveP, SEXP aP, SEXP insampP) {
    // Initialize function arguments.
    BigMatrix *asave = (BigMatrix*)R_ExternalPtrAddr(asaveP);
    BigMatrix *a = (BigMatrix*)R_ExternalPtrAddr(aP);
    MatrixAccessor<int> asaveAcc(*asave);
    MatrixAccessor<int> aAcc(*a);
    int *asaveCol, *aCol;
    int *insamp = INTEGER(insampP);
    
    // Set up working variables.
    index_type nCols = asave->ncol();
    index_type nRows = asave->nrow();
    index_type i, ja, jb;
    
    // For each numerical variable, move all the in-sample data to the top rows
    // of a.
    for (i = 0; i < nCols; i++) {
        asaveCol = asaveAcc[i];
        aCol = aAcc[i];
        for (ja = 0, jb = 0; ja < nRows; ja++) {
            if (insamp[asaveCol[ja] - 1] >= 1) {
                aCol[jb++] = asaveCol[ja];
            }
        }
    }
    return R_NilValue;
}
开发者ID:DucQuang1,项目名称:bigrf,代码行数:31,代码来源:moda.cpp

示例2: SepMatrixAccessor

 SepMatrixAccessor( BigMatrix &bm)
 {
   _ppMat = reinterpret_cast<T**>(bm.matrix());
   _rowOffset = bm.row_offset();
   _colOffset = bm.col_offset();
   _totalRows = bm.nrow();
 }
开发者ID:austian,项目名称:bigExplore,代码行数:7,代码来源:MatrixAccessor.hpp

示例3: read_partial_bignifti_data

    SEXP read_partial_bignifti_data(SEXP nim_addr, SEXP big_addr, \
                                    SEXP rowIndices, SEXP colIndices, \
                                    SEXP totalVoxs) {
        // Get nifti object pointer
        nifti_image *pnim = (nifti_image *)R_ExternalPtrAddr(nim_addr);

        // Get nifti data
        if (nifti_image_load(pnim) < 0) {
            nifti_image_free(pnim);
            error("Could not load nifti data");
        }

        // Save data to big matrix object
        BigMatrix *pMat = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(big_addr));

        if (pMat->separated_columns()) {
            switch (pMat->matrix_type()) {
            case 1:
                return Read_Partial_Nifti_To_BigMatrix_Step2<char>(pnim, SepMatrixAccessor<char>(*pMat), \
                        rowIndices, colIndices, totalVoxs);
                break;
            case 2:
                return Read_Partial_Nifti_To_BigMatrix_Step2<short>(pnim, SepMatrixAccessor<short>(*pMat), \
                        rowIndices, colIndices, totalVoxs);
                break;
            case 4:
                return Read_Partial_Nifti_To_BigMatrix_Step2<int>(pnim, SepMatrixAccessor<int>(*pMat), \
                        rowIndices, colIndices, totalVoxs);
                break;
            case 8:
                return Read_Partial_Nifti_To_BigMatrix_Step2<double>(pnim, SepMatrixAccessor<double>(*pMat), \
                        rowIndices, colIndices, totalVoxs);
                break;
            }
        }
        else {
            switch (pMat->matrix_type()) {
            case 1:
                return Read_Partial_Nifti_To_BigMatrix_Step2<char>(pnim, MatrixAccessor<char>(*pMat), \
                        rowIndices, colIndices, totalVoxs);
                break;
            case 2:
                return Read_Partial_Nifti_To_BigMatrix_Step2<short>(pnim, MatrixAccessor<short>(*pMat), \
                        rowIndices, colIndices, totalVoxs);
                break;
            case 4:
                return Read_Partial_Nifti_To_BigMatrix_Step2<int>(pnim, MatrixAccessor<int>(*pMat), \
                        rowIndices, colIndices, totalVoxs);
                break;
            case 8:
                return Read_Partial_Nifti_To_BigMatrix_Step2<double>(pnim, MatrixAccessor<double>(*pMat), \
                        rowIndices, colIndices, totalVoxs);
                break;
            }
        }

        error("failed to identify big matrix type");
    }
开发者ID:rforge,项目名称:niftir,代码行数:58,代码来源:niftir.cpp

示例4: BigSumMain

 SEXP BigSumMain(SEXP addr, SEXP cols, SEXP rows) {
     SEXP ret = R_NilValue;
     ret = PROTECT(NEW_NUMERIC(1));
     double *pRet = NUMERIC_DATA(ret);
     
     BigMatrix *pMat = (BigMatrix*)R_ExternalPtrAddr(addr);
     
     if (pMat->separated_columns()) {
         switch (pMat->matrix_type()) {
             case 1:
                 BigSum<char, SepMatrixAccessor<char> >(
                 pMat, cols, rows, pRet);
                 break;
             case 2:
                 BigSum<short, SepMatrixAccessor<short> >(
                 pMat, cols, rows, pRet);
                 break;
             case 4:
                 BigSum<int, SepMatrixAccessor<int> >(
                 pMat, cols, rows, pRet);
                 break;
             case 8:
                 BigSum<double, SepMatrixAccessor<double> >(
                 pMat, cols, rows, pRet);
                 break;
         }
     }
     else {
         switch (pMat->matrix_type()) {
             case 1:
                 BigSum<char, MatrixAccessor<char> >(
                 pMat, cols, rows, pRet);
                 break;
             case 2:
                 BigSum<short, MatrixAccessor<short> >(
                 pMat, cols, rows, pRet);
                 break;
             case 4:
                 BigSum<int, MatrixAccessor<int> >(
                 pMat, cols, rows, pRet);
                 break;
             case 8:
                 BigSum<double, MatrixAccessor<double> >(
                 pMat, cols, rows, pRet);
                 break;
         }
     }
     
     UNPROTECT(1);
     return(ret);
 }
开发者ID:czarrar,项目名称:bigextensions,代码行数:51,代码来源:biganalyticsplus.cpp

示例5: CIPTMatrix

  SEXP CIPTMatrix(SEXP inAddr)
  {
    BigMatrix *pInMat = reinterpret_cast<BigMatrix*>(
      R_ExternalPtrAddr(inAddr));
    
    // Not sure if there is a better way to do these function calls
    if (pInMat->separated_columns()) {
      // Need method for separated_columns
      //CALL_IPT_2(SepMatrixAccessor)
    }
    else
    {
      CALL_IPT_2(MatrixAccessor)
    }

    return R_NilValue;
  }
开发者ID:cdeterman,项目名称:bigmemoryExt,代码行数:17,代码来源:transposeBM.cpp

示例6: MatrixAccessor

 MatrixAccessor( BigMatrix &bm )
 {
   _pMat = reinterpret_cast<T*>(bm.matrix());
   _totalRows = bm.total_rows();
   _totalCols = bm.total_columns();
   _rowOffset = bm.row_offset();
   _colOffset = bm.col_offset();
   _nrow = bm.nrow();
   _ncol = bm.ncol();
 }
开发者ID:cran,项目名称:bigmemory,代码行数:10,代码来源:MatrixAccessor.hpp

示例7: make_double_ptr

/* Pointer utility, returns a double pointer for either a BigMatrix or a
 * standard R matrix.
 */
double *
make_double_ptr (SEXP matrix, SEXP isBigMatrix)
{
  double *matrix_ptr;

  if (LOGICAL_VALUE (isBigMatrix) == (Rboolean) TRUE)   // Big Matrix
    {
      SEXP address = GET_SLOT (matrix, install ("address"));
      BigMatrix *pbm =
        reinterpret_cast < BigMatrix * >(R_ExternalPtrAddr (address));
      if (!pbm)
        return (NULL);

      // Check that have acceptable big.matrix
      if (pbm->row_offset () > 0 && pbm->ncol () > 1)
        {
          std::string errMsg =
            string ("sub.big.matrix objects cannoth have row ") +
            string
            ("offset greater than zero and number of columns greater than 1");
          Rf_error (errMsg.c_str ());
          return (NULL);
        }

      index_type offset = pbm->nrow () * pbm->col_offset ();
      matrix_ptr = reinterpret_cast < double *>(pbm->matrix ()) + offset;
    }
  else                          // Regular R Matrix
    {
      matrix_ptr = NUMERIC_DATA (matrix);
    }

  return (matrix_ptr);
};
开发者ID:cran,项目名称:bigalgebra,代码行数:37,代码来源:bigalgebra.cpp

示例8: ComputePvalsMain

SEXP ComputePvalsMain(SEXP Rinmat, SEXP Routmat, SEXP Routcol) {
    BigMatrix *inMat = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(Rinmat));
    BigMatrix *outMat = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(Routmat));
    double outCol = NUMERIC_DATA(Routcol)[0];
    
    if (inMat->separated_columns() != outMat->separated_columns())
        Rf_error("all big matrices are not the same column separated type");
    if (inMat->matrix_type() != outMat->matrix_type())
        Rf_error("all big matrices are not the same matrix type");
    if (inMat->ncol() != outMat->nrow())
        Rf_error("inMat # of cols must be the same as outMat # of rows");
    
    CALL_BIGFUNCTION_ARGS_THREE(ComputePvals, inMat, outMat, outCol)
    return(ret);
}
开发者ID:czarrar,项目名称:connectir,代码行数:15,代码来源:adonis.cpp

示例9: diagonalmatrices

template<typename MatrixType> void diagonalmatrices(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;
  enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
  typedef Matrix<Scalar, Rows, 1> VectorType;
  typedef Matrix<Scalar, 1, Cols> RowVectorType;
  typedef Matrix<Scalar, Rows, Rows> SquareMatrixType;
  typedef DiagonalMatrix<Scalar, Rows> LeftDiagonalMatrix;
  typedef DiagonalMatrix<Scalar, Cols> RightDiagonalMatrix;
  typedef Matrix<Scalar, Rows==Dynamic?Dynamic:2*Rows, Cols==Dynamic?Dynamic:2*Cols> BigMatrix;
  Index rows = m.rows();
  Index cols = m.cols();

  MatrixType m1 = MatrixType::Random(rows, cols),
             m2 = MatrixType::Random(rows, cols);
  VectorType v1 = VectorType::Random(rows),
             v2 = VectorType::Random(rows);
  RowVectorType rv1 = RowVectorType::Random(cols),
             rv2 = RowVectorType::Random(cols);
  LeftDiagonalMatrix ldm1(v1), ldm2(v2);
  RightDiagonalMatrix rdm1(rv1), rdm2(rv2);
  
  Scalar s1 = internal::random<Scalar>();

  SquareMatrixType sq_m1 (v1.asDiagonal());
  VERIFY_IS_APPROX(sq_m1, v1.asDiagonal().toDenseMatrix());
  sq_m1 = v1.asDiagonal();
  VERIFY_IS_APPROX(sq_m1, v1.asDiagonal().toDenseMatrix());
  SquareMatrixType sq_m2 = v1.asDiagonal();
  VERIFY_IS_APPROX(sq_m1, sq_m2);
  
  ldm1 = v1.asDiagonal();
  LeftDiagonalMatrix ldm3(v1);
  VERIFY_IS_APPROX(ldm1.diagonal(), ldm3.diagonal());
  LeftDiagonalMatrix ldm4 = v1.asDiagonal();
  VERIFY_IS_APPROX(ldm1.diagonal(), ldm4.diagonal());
  
  sq_m1.block(0,0,rows,rows) = ldm1;
  VERIFY_IS_APPROX(sq_m1, ldm1.toDenseMatrix());
  sq_m1.transpose() = ldm1;
  VERIFY_IS_APPROX(sq_m1, ldm1.toDenseMatrix());
  
  Index i = internal::random<Index>(0, rows-1);
  Index j = internal::random<Index>(0, cols-1);
  
  VERIFY_IS_APPROX( ((ldm1 * m1)(i,j))  , ldm1.diagonal()(i) * m1(i,j) );
  VERIFY_IS_APPROX( ((ldm1 * (m1+m2))(i,j))  , ldm1.diagonal()(i) * (m1+m2)(i,j) );
  VERIFY_IS_APPROX( ((m1 * rdm1)(i,j))  , rdm1.diagonal()(j) * m1(i,j) );
  VERIFY_IS_APPROX( ((v1.asDiagonal() * m1)(i,j))  , v1(i) * m1(i,j) );
  VERIFY_IS_APPROX( ((m1 * rv1.asDiagonal())(i,j))  , rv1(j) * m1(i,j) );
  VERIFY_IS_APPROX( (((v1+v2).asDiagonal() * m1)(i,j))  , (v1+v2)(i) * m1(i,j) );
  VERIFY_IS_APPROX( (((v1+v2).asDiagonal() * (m1+m2))(i,j))  , (v1+v2)(i) * (m1+m2)(i,j) );
  VERIFY_IS_APPROX( ((m1 * (rv1+rv2).asDiagonal())(i,j))  , (rv1+rv2)(j) * m1(i,j) );
  VERIFY_IS_APPROX( (((m1+m2) * (rv1+rv2).asDiagonal())(i,j))  , (rv1+rv2)(j) * (m1+m2)(i,j) );

  BigMatrix big;
  big.setZero(2*rows, 2*cols);
  
  big.block(i,j,rows,cols) = m1;
  big.block(i,j,rows,cols) = v1.asDiagonal() * big.block(i,j,rows,cols);
  
  VERIFY_IS_APPROX((big.block(i,j,rows,cols)) , v1.asDiagonal() * m1 );
  
  big.block(i,j,rows,cols) = m1;
  big.block(i,j,rows,cols) = big.block(i,j,rows,cols) * rv1.asDiagonal();
  VERIFY_IS_APPROX((big.block(i,j,rows,cols)) , m1 * rv1.asDiagonal() );
  
  
  // scalar multiple
  VERIFY_IS_APPROX(LeftDiagonalMatrix(ldm1*s1).diagonal(), ldm1.diagonal() * s1);
  VERIFY_IS_APPROX(LeftDiagonalMatrix(s1*ldm1).diagonal(), s1 * ldm1.diagonal());
  
  VERIFY_IS_APPROX(m1 * (rdm1 * s1), (m1 * rdm1) * s1);
  VERIFY_IS_APPROX(m1 * (s1 * rdm1), (m1 * rdm1) * s1);
  
  // Diagonal to dense
  sq_m1.setRandom();
  sq_m2 = sq_m1;
  VERIFY_IS_APPROX( (sq_m1 += (s1*v1).asDiagonal()), sq_m2 += (s1*v1).asDiagonal().toDenseMatrix() );
  VERIFY_IS_APPROX( (sq_m1 -= (s1*v1).asDiagonal()), sq_m2 -= (s1*v1).asDiagonal().toDenseMatrix() );
  VERIFY_IS_APPROX( (sq_m1 = (s1*v1).asDiagonal()), (s1*v1).asDiagonal().toDenseMatrix() );
}
开发者ID:Aerobota,项目名称:eigen,代码行数:83,代码来源:diagonalmatrices.cpp

示例10: CtransposeMatrix

  SEXP CtransposeMatrix(SEXP inAddr, SEXP outAddr, SEXP rowInds, SEXP colInds, 
    SEXP typecast_warning)
  {
    BigMatrix *pInMat = reinterpret_cast<BigMatrix*>(
      R_ExternalPtrAddr(inAddr));
    BigMatrix *pOutMat = reinterpret_cast<BigMatrix*>(
      R_ExternalPtrAddr(outAddr));
    
    if ((pOutMat->matrix_type() < pInMat->matrix_type()) & 
      (Rcpp::as<bool>(typecast_warning) == (Rboolean)TRUE))
    {
      string type_names[9] = {
        "", "char", "short", "", "integer", "", "", "", "double"};
      
      std::string warnMsg = string("Assignment will down cast from ") + 
        type_names[pInMat->matrix_type()] + string(" to ") + 
        type_names[pOutMat->matrix_type()] + string("\n") + 
        string("Hint: To remove this warning type: ") + 
        string("options(bigmemory.typecast.warning=FALSE)");
      Rf_warning(warnMsg.c_str());
    }
    
    // Not sure if there is a better way to do these function calls
    if (pInMat->separated_columns() && pOutMat->separated_columns()) {
      CALL_transpose_1(SepMatrixAccessor, SepMatrixAccessor)
    }
    else if(pInMat->separated_columns() && !(pOutMat->separated_columns()))
    {
      CALL_transpose_1(SepMatrixAccessor, MatrixAccessor)
    }
    else if(!(pInMat->separated_columns()) && pOutMat->separated_columns())
    {
      CALL_transpose_1(MatrixAccessor, SepMatrixAccessor)
    }
    else
    {
      CALL_transpose_1(MatrixAccessor, MatrixAccessor)
    }

    return R_NilValue;
  }
开发者ID:cdeterman,项目名称:bigmemoryExt,代码行数:41,代码来源:transposeBM.cpp

示例11: binit1BigMatrix

SEXP binit1BigMatrix(SEXP x, SEXP col, SEXP breaks)
{
  BigMatrix *pMat =  reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(x));
  if (pMat->separated_columns())
  {
    switch (pMat->matrix_type())
    {
      case 1:
        return CBinIt1<char>(SepMatrixAccessor<char>(*pMat),
          pMat->nrow(), col, breaks);
      case 2:
        return CBinIt1<short>(SepMatrixAccessor<short>(*pMat),
          pMat->nrow(), col, breaks);
      case 4:
        return CBinIt1<int>(SepMatrixAccessor<int>(*pMat),
          pMat->nrow(), col, breaks);
      case 8:
        return CBinIt1<double>(SepMatrixAccessor<double>(*pMat),
          pMat->nrow(), col, breaks);
    }
  }
  else
  {
    switch (pMat->matrix_type())
    {
      case 1:
        return CBinIt1<char>(MatrixAccessor<char>(*pMat),
          pMat->nrow(), col, breaks);
      case 2:
        return CBinIt1<short>(MatrixAccessor<short>(*pMat),
          pMat->nrow(), col, breaks);
      case 4:
        return CBinIt1<int>(MatrixAccessor<int>(*pMat),
          pMat->nrow(), col, breaks);
      case 8:
        return CBinIt1<double>(MatrixAccessor<double>(*pMat),
          pMat->nrow(), col, breaks);
    }
  }
  return R_NilValue;
}
开发者ID:akiniwa,项目名称:biganalytics,代码行数:41,代码来源:binit.cpp

示例12: write_bignifti

    SEXP write_bignifti(SEXP header, SEXP big_addr, SEXP indices, SEXP outfile) {
        SEXP Rdim, Rdatatype;

        // Load big matrix
        BigMatrix *pMat = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(big_addr));

        // Get dim
        PROTECT(Rdim = GET_LIST_ELEMENT(header, "dim"));
        if (Rdim == R_NilValue)
            error("header must have a proper dim (dimension) attribute");
        if (GET_LENGTH(Rdim) != 4)
            error("header must have a 4D dim (dimension) attribute");

        // Get datatype
        PROTECT(Rdatatype = GET_LIST_ELEMENT(header, "datatype"));
        if (Rdatatype == R_NilValue) {
            int datatype;
            switch(pMat->matrix_type()) {
            case 1:     // char
                datatype = DT_INT8;
                break;
            case 2:     // short
                datatype = DT_INT16;
                break;
            case 4:     // int
                datatype = DT_INT32;
                break;
            case 8:     // double
                datatype = DT_FLOAT64;
                break;
            default:
                error("unrecognized big matrix data type");
                break;
            }
            Rdatatype = int_to_SEXP(datatype);
        }
        UNPROTECT(1);

        // Load nifti object
        nifti_image *pnim = create_nifti_image(header, Rdim, Rdatatype, outfile);

        if (pMat->separated_columns()) {
            switch (pMat->matrix_type()) {
            case 1:
                Write_BigMatrix_To_Nifti_Step2<char, SepMatrixAccessor<char> >(pnim, pMat, indices);
                break;
            case 2:
                Write_BigMatrix_To_Nifti_Step2<short, SepMatrixAccessor<short> >(pnim, pMat, indices);
                break;
            case 4:
                Write_BigMatrix_To_Nifti_Step2<int, SepMatrixAccessor<int> >(pnim, pMat, indices);
                break;
            case 8:
                Write_BigMatrix_To_Nifti_Step2<double, SepMatrixAccessor<double> >(pnim, pMat, indices);
                break;
            }
        }
        else {
            switch (pMat->matrix_type()) {
            case 1:
                Write_BigMatrix_To_Nifti_Step2<char, MatrixAccessor<char> >(pnim, pMat, indices);
                break;
            case 2:
                Write_BigMatrix_To_Nifti_Step2<short, MatrixAccessor<short> >(pnim, pMat, indices);
                break;
            case 4:
                Write_BigMatrix_To_Nifti_Step2<int, MatrixAccessor<int> >(pnim, pMat, indices);
                break;
            case 8:
                Write_BigMatrix_To_Nifti_Step2<double, MatrixAccessor<double> >(pnim, pMat, indices);
                break;
            }
        }

        if (!nifti_nim_is_valid(pnim, 1))
            error("data seems invalid");

        if (pnim!=NULL)
            nifti_image_write(pnim);
        else
            error("pnim was NULL");

        nifti_image_free(pnim);

        return R_NilValue;
    }
开发者ID:rforge,项目名称:niftir,代码行数:86,代码来源:niftir.cpp

示例13: kmeansMatrixEuclid

SEXP kmeansMatrixEuclid(MatrixType x, index_type n, index_type m,
                  SEXP pcen, SEXP pclust, SEXP pclustsizes,
                  SEXP pwss, SEXP itermax)
{

  index_type j, col, nchange;

  int maxiters = Rf_asInteger(itermax);
  SEXP Riter;
  Rf_protect(Riter = Rf_allocVector(INTSXP, 1));
  int *iter = INTEGER(Riter);
  iter[0] = 0;

  BigMatrix *pcent = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(pcen));
  MatrixAccessor<double> cent(*pcent);
  BigMatrix *Pclust = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(pclust));
  MatrixAccessor<int> clust(*Pclust);
  BigMatrix *Pclustsizes = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(pclustsizes));
  MatrixAccessor<double> clustsizes(*Pclustsizes);
  BigMatrix *Pwss = reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(pwss));
  MatrixAccessor<double> ss(*Pwss);

  int k = (int) pcent->nrow();                // number of clusters
  int cl, bestcl, oldcluster, newcluster;
  int done = 0;

  double temp;
  vector<double> d(k);                        // Vector of distances, internal only.
  vector<double> temp1(k);
  vector<vector<double> > tempcent(m, temp1); // For copy of global centroids k x m

  // At this point I can use [][] to access things, with ss[0][cl]
  // being used for the vectors, for example.
  // Before starting the loop, we only have cent (centers) as passed into the function.
  // Calculate clust and clustsizes, then update cent as centroids.
  
  for (cl=0; cl<k; cl++) clustsizes[0][cl] = 0.0;
  for (j=0; j<n; j++) {
    bestcl = 0;
    for (cl=0; cl<k; cl++) {
      d[cl] = 0.0;
      for (col=0; col<m; col++) {
        temp = (double)x[col][j] - cent[col][cl];
        d[cl] += temp * temp;
      }
      if (d[cl]<d[bestcl]) bestcl = cl;
    }
    clust[0][j] = bestcl + 1;          // Saving the R cluster number, not the C index.
    clustsizes[0][bestcl]++;
    for (col=0; col<m; col++)
      tempcent[col][bestcl] += (double)x[col][j];
  }
  for (cl=0; cl<k; cl++)
    for (col=0; col<m; col++)
      cent[col][cl] = tempcent[col][cl] / clustsizes[0][cl];

  do {

    nchange = 0;
    for (j=0; j<n; j++) { // For each of my points, this is offset from hash position

      oldcluster = clust[0][j] - 1;
      bestcl = 0;
      for (cl=0; cl<k; cl++) {         // Consider each of the clusters
        d[cl] = 0.0;                   // We'll get the distance to this cluster.
        for (col=0; col<m; col++) {    // Loop over the dimension of the data
          temp = (double)x[col][j] - cent[col][cl];
          d[cl] += temp * temp;
        }
        if (d[cl]<d[bestcl]) bestcl = cl;
      } // End of looking over the clusters for this j

      if (d[bestcl] < d[oldcluster]) {           // MADE A CHANGE!
        newcluster = bestcl;
        clust[0][j] = newcluster + 1;
        nchange++;
        clustsizes[0][newcluster]++;
        clustsizes[0][oldcluster]--;
        for (col=0; col<m; col++) {
          cent[col][oldcluster] += ( cent[col][oldcluster] - (double)x[col][j] ) / clustsizes[0][oldcluster];
          cent[col][newcluster] += ( (double)x[col][j] - cent[col][newcluster] ) / clustsizes[0][newcluster];
        }
      }

    } // End of this pass over my points.

    iter[0]++;
    if ( (nchange==0) || (iter[0]>=maxiters) ) done = 1;

  } while (done==0);

  // Collect the sums of squares now that we're done.
  for (cl=0; cl<k; cl++) ss[0][cl] = 0.0;
  for (j=0; j<n; j++) {
    for (col=0; col<m; col++) {
      cl = clust[0][j]-1;
      temp = (double)x[col][j] - cent[col][cl];
      ss[0][cl] += temp * temp;
    }
  }
//.........这里部分代码省略.........
开发者ID:kaneplusplus,项目名称:biganalytics,代码行数:101,代码来源:kmeans.cpp

示例14: kmeansBigMatrix

SEXP kmeansBigMatrix(SEXP x, SEXP cen, SEXP clust, SEXP clustsizes,
                     SEXP wss, SEXP itermax, SEXP dist)
{
  BigMatrix *pMat =  reinterpret_cast<BigMatrix*>(R_ExternalPtrAddr(x));
  int dist_calc = INTEGER(dist)[0];
  if (dist_calc == 0)
  {
    if (pMat->separated_columns())
    {
      switch (pMat->matrix_type())
      {
        case 1:
          return kmeansMatrixEuclid<char>(SepMatrixAccessor<char>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 2:
          return kmeansMatrixEuclid<short>(SepMatrixAccessor<short>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 4:
          return kmeansMatrixEuclid<int>(SepMatrixAccessor<int>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 8:
          return kmeansMatrixEuclid<double>(SepMatrixAccessor<double>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
      }
    }
    else
    {
      switch (pMat->matrix_type())
      {
        case 1:
          return kmeansMatrixEuclid<char>(MatrixAccessor<char>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 2:
          return kmeansMatrixEuclid<short>(MatrixAccessor<short>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 4:
          return kmeansMatrixEuclid<int>(MatrixAccessor<int>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 8:
          return kmeansMatrixEuclid<double>(MatrixAccessor<double>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
      }
    }
  }
  else
  {
    if (pMat->separated_columns())
    {
      switch (pMat->matrix_type())
      {
        case 1:
          return kmeansMatrixCosine<char>(SepMatrixAccessor<char>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 2:
          return kmeansMatrixCosine<short>(SepMatrixAccessor<short>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 4:
          return kmeansMatrixCosine<int>(SepMatrixAccessor<int>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 8:
           return kmeansMatrixCosine<double>(SepMatrixAccessor<double>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
      }
    }
    else
    {
      switch (pMat->matrix_type())
      {
        case 1:
          return kmeansMatrixCosine<char>(MatrixAccessor<char>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 2:
          return kmeansMatrixCosine<short>(MatrixAccessor<short>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 4:
          return kmeansMatrixCosine<int>(MatrixAccessor<int>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
        case 8:
           return kmeansMatrixCosine<double>(MatrixAccessor<double>(*pMat),
            pMat->nrow(), pMat->ncol(), cen, clust, clustsizes, wss, itermax);
      }
    }
  }
  return R_NilValue;
}
开发者ID:kaneplusplus,项目名称:biganalytics,代码行数:85,代码来源:kmeans.cpp

示例15: CDeepCopy

// [[Rcpp::export]]
SEXP CDeepCopy(SEXP inAddr, SEXP outAddr, SEXP rowInds, SEXP colInds,
               SEXP typecast_warning)
{

#define CALL_DEEP_COPY_2(IN_CTYPE, IN_ACCESSOR, OUT_ACCESSOR) \
    switch(pOutMat->matrix_type()) \
    { \
      case 1: \
        DeepCopy<IN_CTYPE, IN_ACCESSOR<IN_CTYPE>, char, OUT_ACCESSOR<char> >( \
          pInMat, pOutMat, rowInds, colInds); \
        break; \
      case 2: \
        DeepCopy<IN_CTYPE, IN_ACCESSOR<IN_CTYPE>, short, OUT_ACCESSOR<short> >( \
          pInMat, pOutMat, rowInds, colInds); \
        break; \
      case 4: \
        DeepCopy<IN_CTYPE, IN_ACCESSOR<IN_CTYPE>, int, OUT_ACCESSOR<int> >( \
          pInMat, pOutMat, rowInds, colInds); \
        break; \
      case 8: \
        DeepCopy<IN_CTYPE, IN_ACCESSOR<IN_CTYPE>, double, OUT_ACCESSOR<double> >( \
          pInMat, pOutMat, rowInds, colInds); \
        break; \
    }

#define CALL_DEEP_COPY_1(IN_ACCESSOR, OUT_ACCESSOR) \
    switch(pInMat->matrix_type()) \
    { \
      case 1: \
        CALL_DEEP_COPY_2(char, IN_ACCESSOR, OUT_ACCESSOR) \
        break; \
      case 2: \
        CALL_DEEP_COPY_2(short, IN_ACCESSOR, OUT_ACCESSOR) \
        break; \
      case 4: \
        CALL_DEEP_COPY_2(int, IN_ACCESSOR, OUT_ACCESSOR) \
        break; \
      case 8: \
        CALL_DEEP_COPY_2(double, IN_ACCESSOR, OUT_ACCESSOR) \
        break; \
    }

    BigMatrix *pInMat = reinterpret_cast<BigMatrix*>(
                            R_ExternalPtrAddr(inAddr));
    BigMatrix *pOutMat = reinterpret_cast<BigMatrix*>(
                             R_ExternalPtrAddr(outAddr));

    if ((pOutMat->matrix_type() < pInMat->matrix_type()) &
            (LOGICAL_VALUE(typecast_warning) == (Rboolean)TRUE))
    {
        string type_names[9] = {
            "", "char", "short", "", "integer", "", "", "", "double"
        };

        std::string warnMsg = string("Assignment will down cast from ") +
                              type_names[pInMat->matrix_type()] + string(" to ") +
                              type_names[pOutMat->matrix_type()] + string("\n") +
                              string("Hint: To remove this warning type: ") +
                              string("options(bigmemory.typecast.warning=FALSE)");
        Rf_warning(warnMsg.c_str());
    }

    // Not sure if there is a better way to do these function calls
    if (pInMat->separated_columns() && pOutMat->separated_columns()) {
        CALL_DEEP_COPY_1(SepMatrixAccessor, SepMatrixAccessor)
    }
    else if(pInMat->separated_columns() && !(pOutMat->separated_columns()))
    {
        CALL_DEEP_COPY_1(SepMatrixAccessor, MatrixAccessor)
    }
    else if(!(pInMat->separated_columns()) && pOutMat->separated_columns())
    {
        CALL_DEEP_COPY_1(MatrixAccessor, SepMatrixAccessor)
    }
    else
    {
        CALL_DEEP_COPY_1(MatrixAccessor, MatrixAccessor)
    }

    return R_NilValue;
}
开发者ID:eddelbuettel,项目名称:bigmemory,代码行数:82,代码来源:deepcopy.cpp


注:本文中的BigMatrix类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。