本文整理汇总了C++中BTreeNode::setType方法的典型用法代码示例。如果您正苦于以下问题:C++ BTreeNode::setType方法的具体用法?C++ BTreeNode::setType怎么用?C++ BTreeNode::setType使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类BTreeNode
的用法示例。
在下文中一共展示了BTreeNode::setType方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: pruneTree
void BTreeBase::pruneTree(BTreeNode *root, bool /*conditionalRoot*/)
{
Traverser t(root);
t.descendLeftwardToTerminal();
bool done = false;
while(!done)
{
//t.descendLeftwardToTerminal();
if( t.current()->parent() )
{
if( t.oppositeNode()->hasChildren() ) pruneTree(t.oppositeNode());
}
t.moveToParent();
if( !t.current()->hasChildren() )
{
//if(t.current() == t.root()) done = true;
if(!t.current()->parent()) done = true;
continue;
}
BTreeNode *l = t.current()->left();
BTreeNode *r = t.current()->right();
BTreeNode *n = 0;
BTreeNode *z = 0;
// Deal with situations where there are two constants so we want
// to evaluate at compile time
if( (l->type() == number && r->type() == number) ) // && !(t.current()==root&&conditionalRoot) )
{
if(t.current()->childOp() == Expression::division && r->value() == "0" )
{
t.current()->setChildOp(Expression::divbyzero);
return;
}
QString value = QString::number(Parser::doArithmetic(l->value().toInt(),r->value().toInt(),t.current()->childOp()));
t.current()->deleteChildren();
t.current()->setChildOp(Expression::noop);
t.current()->setType(number);
t.current()->setValue(value);
}
// Addition and subtraction
else if(t.current()->childOp() == Expression::addition || t.current()->childOp() == Expression::subtraction)
{
// See if one of the nodes is 0, and set n to the node that actually has data,
// z to the one containing zero.
bool zero = false;
if( l->value() == "0" )
{
zero = true;
n = r;
z = l;
}
else if( r->value() == "0" )
{
zero = true;
n = l;
z = r;
}
// Now get rid of the useless nodes
if(zero)
{
BTreeNode *p = t.current(); // save in order to delete after
replaceNode(p,n);
t.setCurrent(n);
// Delete the old nodes
delete p;
delete z;
}
}
// Multiplication and division
else if(t.current()->childOp() == Expression::multiplication || t.current()->childOp() == Expression::division)
{
// See if one of the nodes is 0, and set n to the node that actually has data,
// z to the one containing zero.
bool zero = false;
bool one = false;
if( l->value() == "1" )
{
one = true;
n = r;
z = l;
}
else if( r->value() == "1" )
{
one = true;
n = l;
z = r;
}
if( l->value() == "0" )
{
zero = true;
n = r;
z = l;
}
//.........这里部分代码省略.........
示例2: traverseTree
void Expression::traverseTree( BTreeNode *root, bool conditionalRoot )
{
Traverser t(root);
t.start();
// special case: if we are starting at the root node then
// we are dealing with something of the form variable = 6
// or variable = portb
///TODO reimplement assignments as two branched trees?
if ( t.current() == root &&
!root->hasChildren() &&
t.current()->childOp() != pin &&
t.current()->childOp() != notpin &&
t.current()->childOp() != function &&
t.current()->childOp() != read_keypad )
{
switch(root->type())
{
case number: m_pic->assignNum(root->value()); break;
case variable: m_pic->assignVar(root->value()); break;
default: break; // Should never get here
}
// no need to traverse the tree as there is none.
return;
}
t.setCurrent(root);
if(t.current()->hasChildren())
{
// Here we work out what needs evaulating, and in which order.
// To minimize register usage, if only one branch needs traversing,
// then that branch should be done first.
bool evaluateLeft = t.current()->left()->needsEvaluating();
BTreeNode *evaluateFirst;
BTreeNode *evaluateSecond;
// If both need doing, then it really doesn't matter which we do
// first (unless we are looking to do really complex optimizations...
// Cases:
// - Both need evaluating,
// - or left needs doing first,
// in both cases we evaluate left, then right.
if( evaluateLeft )
{
evaluateFirst = t.current()->left();
evaluateSecond = t.current()->right();
}
// Otherwise it is best to evaluate right first for reasons given above.
else
{
evaluateFirst = t.current()->right();
evaluateSecond = t.current()->left();
}
QString dest1 = mb->dest();
mb->incDest();
QString dest2 = mb->dest();
mb->decDest();
bool evaluated = false;
if( evaluateFirst->hasChildren() )
{
traverseTree(evaluateFirst);
evaluated = true;
}
else if( isUnaryOp(evaluateFirst->childOp()) )
{
doUnaryOp( evaluateFirst->childOp(), evaluateFirst );
evaluated = true;
}
if ( evaluated )
{
// We need to save the result if we are going tro traverse the other
// branch, or if we are performing a subtraction in which case the
// value wanted in working is not the current value.
// But as the optimizer will deal with unnecessary variables anyway,
// always save to a register
evaluateFirst->setReg( dest1 );
evaluateFirst->setType( variable );
m_pic->saveToReg( dest1 );
}
evaluated = false;
if( evaluateSecond->hasChildren() )
{
mb->incDest();
mb->incDest();
traverseTree(evaluateSecond);
evaluated = true;
mb->decDest();
mb->decDest();
}
else if( isUnaryOp(evaluateSecond->childOp()) )
{
doUnaryOp( evaluateSecond->childOp(), evaluateSecond );
evaluated = true;
//.........这里部分代码省略.........
示例3: compileConditional
void Expression::compileConditional( const QString & expression, Code * ifCode, Code * elseCode )
{
if( expression.contains(QRegExp("=>|=<|=!")) )
{
mistake( Microbe::InvalidComparison, expression );
return;
}
if( expression.contains(QRegExp("[^=><!][=][^=]")))
{
mistake( Microbe::InvalidEquals );
return;
}
// Make a tree to put the expression in.
BTreeBase *tree = new BTreeBase();
BTreeNode *root = new BTreeNode();
// parse the expression into the tree
buildTree(expression,tree,root,0);
// Modify the tree so it is always at the top level of the form (kwoerpkwoep) == (qwopekqpowekp)
if ( root->childOp() != equals &&
root->childOp() != notequals &&
root->childOp() != gt &&
root->childOp() != lt &&
root->childOp() != ge &&
root->childOp() != le &&
root->childOp() != pin &&
root->childOp() != notpin &&
root->childOp() != read_keypad )
{
BTreeNode *newRoot = new BTreeNode();
BTreeNode *oneNode = new BTreeNode();
oneNode->setChildOp(noop);
oneNode->setType(number);
oneNode->setValue("1");
newRoot->setLeft(root);
newRoot->setRight(oneNode);
newRoot->setType(unset);
newRoot->setChildOp(ge);
tree->setRoot(newRoot);
root = newRoot;
}
// compile the tree into assembly code
tree->setRoot(root);
tree->pruneTree(tree->root(),true);
// We might have just a constant expression, in which case we can just always do if or else depending
// on whether it is true or false.
if( root->childOp() == noop )
{
if( root->value().toInt() == 0 )
m_pic->mergeCode( elseCode );
else
m_pic->mergeCode( ifCode );
return;
}
// traverse tree with argument conditionalRoot true
// so that 3 == x gets integrated with code for if, repeat until etc...
m_ifCode = ifCode;
m_elseCode = elseCode;
traverseTree(tree->root(),true);
// Note deleting the tree deletes all nodes, so the root
// doesn't need deleting separately.
delete tree;
}
示例4: buildTree
//.........这里部分代码省略.........
// ^
case 4:
{
int exppos = findSkipBrackets(expression, '^');
if( exppos != -1 )
{
op = exponent;
firstEnd = exppos;
secondStart = exppos + 1;
}
else op = noop;
break;
}
// AND, OR, XOR
case 5:
{
int bwAndPos = findSkipBrackets(expression, " AND ");
int bwOrPos = findSkipBrackets(expression, " OR ");
int bwXorPos = findSkipBrackets(expression, " XOR ");
if( bwAndPos != -1 )
{
op = bwand;
firstEnd = bwAndPos;
secondStart = bwAndPos + 5;
}
else if( bwOrPos != -1 )
{
op = bwor;
firstEnd = bwOrPos;
secondStart = bwOrPos + 4;
}
else if( bwXorPos != -1 )
{
op = bwxor;
firstEnd = bwXorPos;
secondStart = bwXorPos + 5;
}
else op = noop;
break;
}
// NOT
case 6:
{
int bwNotPos = findSkipBrackets(expression, " NOT ");
if( bwNotPos != -1 )
{
op = bwnot;
unary = true;
firstEnd = bwNotPos; // this line is not needed for unary things/
secondStart = bwNotPos + 5;
}
else op = noop;
break;
}
}
node->setChildOp(op);
QString tokens[2];
tokens[0] = expression.left(firstEnd).trimmed();
tokens[1] = expression.mid(secondStart).trimmed();
if( op != noop )
{
for( int j = 0; j < 2; j++ )
{
BTreeNode *newNode = new BTreeNode();
tree->addNode( node, newNode, (j == 0) );
// we need to strip any brackets from the sub-expression
// try each token again at the same level, if they
// don't have any of this level's operators, then the function
// will go to the next level as below.
// For unary opertaions, e.g NOT, we have no special
// code for nodes with only one child, so we leave the left
// hand child blank and put the rest in the right hand node.
if( unary && j == 0 )
{
newNode->setValue("");
newNode->setType(number);
}
else buildTree(tokens[j], tree, newNode, 0 );
}
}
else
{
// if there was no relevant operation i.e. " 3*4 / 6" as opposed to " 3*4 + 6"
// then just pass the node onto the next parsing level.
// unless we are at the lowest level, in which case we have reached a final value.
if( level == 6 ) expressionValue(expression,tree,node);
else
{
buildTree(expression,tree,node,level + 1);
}
}
}