当前位置: 首页>>代码示例>>C++>>正文


C++ BTreeNode::setLeftSibling方法代码示例

本文整理汇总了C++中BTreeNode::setLeftSibling方法的典型用法代码示例。如果您正苦于以下问题:C++ BTreeNode::setLeftSibling方法的具体用法?C++ BTreeNode::setLeftSibling怎么用?C++ BTreeNode::setLeftSibling使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在BTreeNode的用法示例。


在下文中一共展示了BTreeNode::setLeftSibling方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: split

InternalNode* InternalNode::split(int value){
  InternalNode* newNode = new InternalNode(internalSize, leafSize, parent, this, NULL);
  sort();
  BTreeNode* oldRightNode = getRightSibling();
  
  if(oldRightNode){
    oldRightNode->setLeftSibling(newNode);
    newNode->setRightSibling(oldRightNode);
    newNode->setLeftSibling(this);
  }
  
  //cout << keys[0] << " " << keys[1] << " " << keys[2] << endl;
  //cout << children[0]->getMinimum() << " " << children[1]->getMinimum() << endl;

  for(int i = ((internalSize+1) / 2); i < internalSize; i++){
    //cout << "Internal: Inserting " << keys[i] << " into new Node" << endl;
    newNode->insert(keys[i]);
  }

  count = count - newNode->getCount();
  
  if(keys[0] > value){
    newNode->insert(keys[0]);
    keys[0] = value;
  }

  else{
    newNode->insert(value);
  }
  
  setRightSibling(newNode);
  
  return newNode;
}
开发者ID:michaelromero,项目名称:Algorithms_DataStructures_CPP,代码行数:34,代码来源:InternalNode.cpp

示例2: split

LeafNode* LeafNode::split(int value)
{       
	if (rightSibling) //if there is a right sibling
	{
		BTreeNode* ptr = rightSibling;
		rightSibling = new LeafNode(leafSize, parent, this, ptr);
		ptr->setLeftSibling(rightSibling);
	}
	else //no right sibling
		rightSibling = new LeafNode(leafSize, parent, this, NULL);

	//cout << "leafnode split" << endl;
        int max = values[leafSize - 1];
        if (max > value)
        {
        	values[leafSize - 1] = value;

               	for (int pos = (leafSize - 1); pos > 0; pos--)
               	{
            		if ((values[pos - 1]) > value)
                        {
                        	values[pos] = values[pos - 1];
                                values[pos - 1] = value;
                        }
                }
        }
       	else max = value;
        	
	((LeafNode*)rightSibling)->insert(max);

	int numpass = leafSize / 2;//how many number to give to rightSiblihng other than max
        for (int pos = (leafSize - 1); pos > (leafSize - 1 - numpass); pos --)
        {
         	((LeafNode*)rightSibling)->insert(values[pos]);
                count --;
        }
        return (LeafNode*)rightSibling;

	return NULL; //to avoid warnings

} //LeafNode::split()
开发者ID:delhuy12,项目名称:ecs60,代码行数:41,代码来源:LeafNode.cpp

示例3: remove

BTreeNode* InternalNode::remove(int value)
{  // to be written by students
  BTreeNode* ptr;
 // int pos = Position(value);
  int pos;
  for(pos = count -1; pos > 0 && keys[pos] > value; pos--);
   BTreeNode* random = children[pos]->remove(value);  
  
  if(random != NULL)
  {
    BTreeNode* hey = random;

    if (hey->getCount() == internalSize)
      return hey;
  
  delete random;
    int temp_zero_location;
    for (int i = 0; i < count; i++)
    {
        if (keys[i] == 0)
        {
            temp_zero_location = i;
        }        
    }
    for (int j = temp_zero_location; j < count; j++)
    {
      keys[j] = keys[j+1];
                children[j] = children[j+1];
    }

       count--; 

  if(parent)
  {
    parent->resetMinimum(this); 
  }
        
  
  if (count < (internalSize+1)/2)// && parent != NULL) 
  {
    //borrow from left sibling
   // ((InternalNode*)leftSibling);
    if(((InternalNode*)leftSibling))
    { //If Left sibling is there 
       if(((InternalNode*)leftSibling)->getCount()-1 < (internalSize+1)/2)
       {
         for (int i = (count -1); i >= 0; i--)
         {
           ((InternalNode*)leftSibling)->insert(children[i]);
         }
       ((InternalNode*)leftSibling)->setRightSibling(((InternalNode*)rightSibling));
         return ((InternalNode*)leftSibling);
       }
    }

      // else{
      // } 
  //  ((InternalNode*)rightSibling);
    else if(((InternalNode*)rightSibling))
    {
      if((((InternalNode*)rightSibling)->getCount()-1) < (internalSize+1)/2)
      { 
         for (int i = (count - 1); i >= 0; i--)
         {
            ((InternalNode*)rightSibling)->insert(children[i]);
         } 

         BTreeNode* temp = this->getRightSibling();
         temp->setLeftSibling(((InternalNode*)leftSibling));
         return temp;
       // else{
      }
    }
  }
}
          if (count == 1)
        {
           children[0]->setParent(NULL);
         return children[0];
       }
   return NULL;
}
开发者ID:hmirza,项目名称:ECS60,代码行数:82,代码来源:InternalNode.cpp

示例4: insert

InternalNode* InternalNode::insert(int value)
{
  // students must write this
  updateMinimums();
  sort();
  //updateMinimums();
  //cout << "Starting InternalNode insert: " << value << endl;
  
  //search keys for position to insert, count - 1 because elements start at 0
  int searchKey = count-1;
  for(int i = count-1; keys[searchKey] > value && i > 0; i--){
    //cout << keys[searchKey] << " > " << value << endl;
    searchKey--;
  }
  BTreeNode* leafSplit = children[searchKey]->insert(value);
  updateMinimums();
  sort();
  //updateMinimums();
  //for(int i = 6; i >= 0; i--)
  //  cout << "Keys[" << i << "]: " << keys[i] << endl;
  if(!leafSplit){
    //cout << "no leaf split" << endl;
    return NULL;  
  }
  
  if(leafSplit && count < internalSize){
    //add here
    //cout << "InternalNode Insert Here" << endl;
    //cout << "InternalNode leafSplit has min: " << leafSplit->getMinimum() << endl;
    keys[count] = leafSplit->getMinimum();
    children[count] = leafSplit;
    count++;
    updateMinimums();
    sort();
    //updateMinimums();
    return NULL;
  }

  else if(leftSibling && leftSibling->getCount() < internalSize){
    //addToLeft(internalSplit)
    //cout << "NEED TO SHARE TO LEFT" << endl;
    //  cout << "Adding to left internal" << endl;
    ((InternalNode*)leftSibling)->insert(children[0]);
    ((InternalNode*)leftSibling)->updateMinimums();
    ((InternalNode*)leftSibling)->sort();
    //((InternalNode*)leftSibling)->updateMinimums();
    count--;
    for(int i = 0; i < count; i++)
    {
      children[i] = children[i + 1];
      keys[i] = keys[i + 1];
    }
      
      children[count] = leafSplit; 
      keys[count] = leafSplit->getMinimum();
      count++;
      updateMinimums();
      sort();
      //updateMinimums();
      //cout << "leafSplit min: " << leafSplit->getMinimum() << endl; 
      leafSplit->setParent(this);
      if(parent)
        parent->findMin(this);
      return NULL;
  }
  else if(rightSibling && rightSibling->getCount() < internalSize){
    //addtoRight
    if(keys[count-1] > leafSplit->getMinimum()){
      //cout << "Internal Passing to right: " << keys[count-1] << endl; 
      ((InternalNode*) rightSibling)->insert(children[count-1]);
      ((InternalNode*) rightSibling)->updateMinimums();
      ((InternalNode*) rightSibling)->sort();
      children[count-1] = leafSplit;
      updateMinimums();
      sort();
      if(((InternalNode*) rightSibling)->parent){
        (((InternalNode*) rightSibling)->parent)->updateMinimums();
        (((InternalNode*) rightSibling)->parent)->sort();

      }
    } 
    
    
    return NULL;
  }

  else if(leafSplit){
    //cout << "Internal Split" << endl;
    InternalNode* newRight = new InternalNode(internalSize, leafSize, parent, this, rightSibling);
    BTreeNode* oldRight = getRightSibling();
    if(rightSibling){
      oldRight->setLeftSibling(newRight);
      newRight->setRightSibling(oldRight);
      newRight->setLeftSibling(this);
    }
    
    rightSibling = newRight;
    int rightCount;
    for(int i = (internalSize+1) / 2; i < internalSize; i++){
      //cout << "i: " << i << endl;
//.........这里部分代码省略.........
开发者ID:michaelromero,项目名称:Algorithms_DataStructures_CPP,代码行数:101,代码来源:InternalNode.cpp

示例5: split

LeafNode* LeafNode::split(int value){
  //print old node
  //cout << "PRINTING OLD NODE" << endl;
  //cout << "COUNT: " << count << endl;
  //for(int i = 0; i < count; i++){
  //  cout << values[i] << " ";
  //}
  //cout << endl;
  //cout << "LeafNode:split" << endl;

  //creat a new leafNode to the right, will automatically attach as sibling
  LeafNode* newNode = new LeafNode(leafSize, parent, this, NULL);

  //need to insert this new node between this node and potential rightSibling
  BTreeNode* oldRightNode = getRightSibling();
  
  if(oldRightNode){ // if there is a right sibling prior to split
    //cout << "Leafnode:split: there is a right sibling prior to split" << endl;
    //cout << "oldRight has min: " << oldRightNode->getMinimum() << endl;
    //cout << "newNodes left has min: " << getMinimum() << endl;
    oldRightNode->setLeftSibling(newNode); //set the right sibling to this new node in middle
    newNode->setRightSibling(oldRightNode); //set new nodes right to the right sibling of this
    newNode->setLeftSibling(this); // maybe not needed since constructor has this
  }

  
  //cout << "leafSize % 2 = " << leafSize % 2 << endl;
  //cout << "Value: " << value << " values[" << leafSize/2 << "]: " << values[leafSize/2] << endl;
  
  //simpler insert, if breaks, use doomsday comment below to fix
  for(int i = ((leafSize+1) / 2); i < leafSize; i++){
    //cout << "Leaf Split: inserting (top half)" << values[i] << " into newNode" << endl;
    newNode->insert(values[i]);
  }
  count = count - newNode->getCount();
  if(values[0] > value){
    //cout << "first if" << endl;
    newNode->insert(values[0]);
    values[0] = value;
  }
  else if(values[(((leafSize+1)/2)-1)] > value){
    //cout << " else if " << endl;
    newNode->insert(values[(((leafSize+1)/2)-1)]);
    values[(((leafSize+1)/2)-1)] = value; 
    sort();
    parent->updateMinimums();
    parent->sort();
    
  }
  else{
    //cout << "Leaf Split: inserting (else)" << value << " into newNode" << endl;
    if(newNode->parent){
      newNode->parent->updateMinimums();
      newNode->parent->sort();
      //cout << "Has parent with min: " << newNode->parent->getMinimum() <<  endl;
    }
    newNode->insert(value);
  }
  setRightSibling(newNode);

  //newNode->values[newNode->count++] = last;

  //if(value == values[0] && parent)
  //  parent->updateMinimums();
  return newNode;

  // FOLLOWING COMMENT MIGHT BREAK EVERYTHING
  /* 
  //if leaf is odd, and new value will be inserted into old, and mid to last will go into new
  if((leafSize % 2 == 1) && value < values[(leafSize-1)]){
    //cout << "odd: New value inserted into old" << endl;
    for(int i = count/2; i < leafSize; i++){
      newNode->insert(values[i]);
    }
    count = count - newNode->getCount();
    insert(value);
    //rightSibling = newNode;
    setRightSibling(newNode);
  }
  //if leaf is odd, and new value will be inserted into new
  if((leafSize % 2 == 1) && value > values[leafSize-1]){
    //cout << "odd: New value inserted into new" << endl;
    for(int i = (count/2)+1; i < leafSize; i++){
      //cout << "Inserting " << values[i] << " into new" << endl;
      newNode->insert(values[i]);
    }
    count = count - newNode->getCount();
    newNode->insert(value);
    //rightSibling = newNode;
    setRightSibling(newNode);
  }

  //if leaf is even, and new value will be insterted into old, and mid to last will go into new
  if((leafSize%2 == 0) && value < values[leafSize-1]){
    cout << "even: New value " << value << " inserted into old" << endl;
    //cout << value << " < " << values[leafSize/2] << endl;
    //cout << "Count/2: " << count/2 << endl;
    for(int i = count/2; i < leafSize; i++){
      //cout << "Insering " << values[i] << " into new" << endl;
      newNode->insert(values[i]);
//.........这里部分代码省略.........
开发者ID:michaelromero,项目名称:Algorithms_DataStructures_CPP,代码行数:101,代码来源:LeafNode.cpp


注:本文中的BTreeNode::setLeftSibling方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。